Vous êtes ici : Accueil > Sections CNU > Section 26 - Mathématiques appliquées et applications des mathématiques

Section 26 - Mathématiques appliquées et applications des mathématiques

Les thèses se rapportant à la section CNU "Section 26 - Mathématiques appliquées et applications des mathématiques"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
19 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Étude des solutions stationnaires d'un modèle de champs de phase cristallin    - Abourou Ella Appolinaire  -  19 septembre 2013

    Voir le résumé
    Voir le résumé
    Cette thèse porte essentiellement sur l'étude des solutions stationnaires, en dimension 1 d'espace, d'un modèle de champs de phase cristallin introduit par Elder en 2002. Ainsi, nous prouvons, par la méthode de réduction de Lyapunov-Schmidt et la technique des multiparamètres, l'existence de courbes de solutions bifurquantes stationnaires lorsque le noyau de l'opérateur linéarisé, au voisinage de la solution triviale est de dimension 2. Une parenthèse est ouverte pour la comparaison de l'énergie de la solution bifurquante par rapport à celle la solution triviale. Aussi, grâce au principe de la stabilité réduite, nous fournissons des ensembles précis de valeurs des paramètres de bifurcation pour lesquelles les solutions obtenues sont stables ou instables. Ces résultats théoriques sont corroborés par plusieurs tests numériques. Par ailleurs, dans le cas classique du noyau unidimensionel, nous établissons des diagrammes de phases permettant de comprendre les différentes orientations de courbes de solutions non triviales au voisinage de chaque point de bifurcation.

  • Analyse de quelques équations différentielles à retard et EDP modélisant les instabilités de surfaces    - Alriyabi Ali  -  08 mars 2013

    Voir le résumé
    Voir le résumé
    Cette thèse est divisée en deux parties principales : La première partie concerne la déformation plastique d'un matériau contraint. Nous commençons cette partie par une introduction physique sur la dislocation et son rôle dans l'étude de la déformation plastique. Nous exposons ensuite deux types de modélisation de la déformation plastique ce qui nous conduit à deux équations différentielles à retard de Mecking-Lüke-Grilhé. Nous présentons une analyse mathématique complète des deux modèles linéaire et non linéaire. Nous terminons cette partie par des tests numériques et une comparaison des deux modèles. La deuxième partie de la thèse traite l'instabilité de Rayleigh-Plateau. Cette étude porte sur les instabilités de surface d'un pore cylindrique sans contraintes. Nous nous intéressons à une EDP parabolique non linéaire d'ordre quatre, obtenue à partir d'une équation d'évolution des films minces. Le résultat principal est l'existence globale de la solution et la convergence vers la valeur moyenne de la donnée initiale en temps long. L'étude théorique est aussi appuyée comme dans la première partie par une validation numérique.

  • Équations de diffusion paramétrée par la portée des interactions à longue distance    - Andami Ovono Armel  -  24 février 2009

    Voir le résumé
    Voir le résumé
    Nous nous intéressons dans cette thèse à l'étude d'une équation parabolique quasilinéaire dans laquelle la diffusion est paramétrée par la longueur des différentes interactions non locales. Pour ce qui est du problème stationnaire associé, après avoir montré des résultats d'existence, d' unicité et de continuité. Nous présentons ensuite un critère général d' inversibilité dépendant du paramètre, ce critère très important va par la suite nous permettre en exemple d'application, de retrouver des résultats d'inversibilité déjà connus lorsque le paramètre est égale au diamètre du domaine. Nous donnons ensuite un résultat de principe de comparaisons de solutions symétriques radiales et une généralisation du compte du nombre de solutions. Enfin nous donnons quelques applications numériques utilisant une méthode de point fixe et de Newton pour illustrer ces résultats. Pour le problème d'évolution, après avoir montré l'existence d'un attracteur global associé à notre problème, nous démontrons une estimation L∞ de la solution en fonction d'estimations Lq, q > 1 utilisant des itérations de type Moser

  • Régularité de problèmes à données dans les espaces pondérés par la distance au bord via l'inégalité uniforme de Hopf et le principe de dualité    - Berdan Nada El  -  05 décembre 2016

    Voir le résumé
    Voir le résumé
    Cette thèse, comporte deux parties distinctes. Dans la première partie, on étudie l'existence et l'inexistence d'une inégalité qu'on a appelée l'inégalité de Hopf Uniforme (IHU), pour une équation linéaire de la forme Lv = f à coefficients bornés mesurables et sous les conditions de Dirichlet homogènes. L'IHU est une variante du principe de maximum, on l'a appliquée dans la preuve de la régularité W1;p 0 pour un problème semi-linéaire singulier : Lu = F(u) où les coefficients de L sont dans l'espace vmor (fonctions à oscillation moyenne évanescente) et F(u) est singulier en u = 0 F(0) = +∞. De plus, si les coefficients sont lipschitziens, on prouve que la régularité optimale du gradient de la solution u est bmor (fonctions à oscillation moyenne bornée i.e Grad u dans bmor). Dans la seconde partie, on s'intéresse à la régularité du système d'élasticité (équations stationnaires des ondes élastiques) avec une fonction source singulière au sens qu'elle n’est qu'intégrable par rapport à la fonction distance au bord du domaine. Via la dualité, nous montrons, selon ~f , que le problème admet une solution dite très faible dont le gradient n'est pas nécessairement intégrable sur tout le domaine mais uniquement localement. Nous déterminons aussi les fonctions vectorielles ~f pour lesquelles, ~u a son gradient intégrable sur tout l'espace de travail.

  • Sur l'approximation rationnelle pour le semi-groupe de transport    - Cherif Mohamed Amine  -  09 juillet 2010

    Voir le résumé
    Voir le résumé
    La notion de l'approximation rationnelle est normalement conçue pour la discrétisation en temps. Dans cette thèse nous mélangeons cette notion avec la notion de la convergence au sens de Kato qui découle d'une discrétisation en espace pour l'équation de transport neutronique. Nous appliquons cette procedure aux schémas d'Euler explicite et implicite, Crank-Nicolson et Prédicateur-Correcteur qui ont le degré de convergence 1,2 et 3 au sens de l'approximation rationnelle. Pour démontrer la convergence nous utiliserons le théorème de Cherno et nous donnons aussi des illustrations numérique pour justifier ces degrés de convergence. Dans le dernier chapitre nous donnons quelques nouvelles généralisations des théorèmes de point fixe de type Schauder et de type Krasnoselskii qui se basent sur la notion de la compacité faible sur des espaces Fréchet ayant la propriété de Dunford- Pettis et sur la notion de la U-équicontraction.

  • Problèmes de valeurs propres pour des opérateurs multivoques    - Chrayteh Houssam  -  08 mars 2012

    Voir le résumé
    Voir le résumé
    L'objectif de notre recherche est d'étudier l'existence et la régularité des solutions pour des problèmes de valeurs propres faisant intervenir un opérateur →p-multivoque A : V → P(V*) sur un domaine régulier Ω C Rᶰ. Par l'intermédiaire des N-fonctions, nous construisons un opérateur →p-multivoque de Leray-Lions "fortement monotone" sur un espace d'Orlicz-Sobolev anisotrope. Nous signalons que la formulation théorique des problèmes associés à cet opérateur repose essentiellement sur la notion de sous-différentielle de Clarke, pour cela, nous donnons des nouvelles méthodes variationelles qui correspondent à la résolution de ces problèmes dans le cas "sous-critique" dans lequel la compacité joue un rôle important puis dans le cas critique lorsque nous perdons la compacité. Différentes applications sont données pour illustrer nos résultats abstraits, par exemple, un opérateur anisotrope aux exposants variables et un opérateur avec un poids de type Hardy.

  • Utilisation d'approches probabilistes basées sur les critères entropiques pour la recherche d'information sur supports multimédia    - Coq Guilhelm  -  05 décembre 2008

    Voir le résumé
    Voir le résumé
    Les problèmes de sélection de modèles se posent couramment dans un grand nombre de domaines applicatifs tels que la compression de données ou le traitement du signal et de l'image. Un des outils les plus utilisés pour résoudre ces problèmes se présente sous la forme d'une quantité réelle à minimiser appelée critère d'information ou critère entropique pénalisé. La principale motivation de ce travail de thèse est de justifier l'utilisation d'un tel critère face à un problème de sélection de modèles typiquement issu d'un contexte de traitement du signal. La justification attendue se doit, elle, d'avoir un solide fondement mathématique. Nous abordons aussi le problème classique de la détermination de l'ordre d'une autorégression. La régression gaussienne, permettant de détecter les harmoniques principales d'un signal bruité, est également abordée. Pour ces problèmes, nous donnons un critère dont l'utilisation est justifiée par la minimisation du coût résultant de l'estimation obtenue. Les chaînes de Markov multiples modèlisent la plupart des signaux discrets, comme les séquences de lettres ou les niveaux de gris d'une image. Nous nous intéressons au problème de la détermination de l'ordre d'une telle chaîne. Dans la continuité de ce problème nous considérons celui, a priori éloigné, de l'estimation d' une densité par un histogramme. Dans ces deux domaines, nous justifions l' utilisation d' un critère par des notions de codage auxquelles nous appliquons une forme simple du principe de " Minimum description Length ". Nous nous efforçons également, à travers ces différents domaines d'application, de présenter des méthodes alternatives d' utilisation des critères d' information. Ces méthodes, dites comparatives, présentent une complexité d' utilisation moindre que les méthodes rencontrées habituellement, tout en permettant une description précise du modèle.

  • Étude de modèles de champ de phase de type Caginalp    - Doumbé Bangola Brice Landry  -  03 mai 2013

    Voir le résumé
    Voir le résumé
    Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux modèles : le premier étant une généralisation du modèle de champ de phase de Caginalp basée sur une généralisation de la loi de Maxwell-Cattaneo et le second une généralisation provenant de la théorie de la conduction de chaleur introduite par Chen et Gurtin. L'étude du premier modèle est faite aussi bien dans un domaine borné (avec un potentiel régulier puis dans le cas d'un potentiel non régulier), que dans un domaine non borné, en l'occurrence R3. Le second modèle est un problème de champ de phase avec un couplage (linéaire et non linéaire). Tout d'abord, l'existence, l'unicité et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants et compacts attractifs est établie, assurant ainsi l'existence de l'attracteur global. Enfin, dans certains cas, l'existence d'attracteurs exponentiels, ainsi que le comportement spatial des solutions lorsque le domaine spatial est un cylindre semi-infini tri-dimensionnel, sont analysés.

  • Nouvelle approche de la méthode D-Bar pour la résolution du problème de conductivité inverse    - El Arwadi Toufic  -  23 juin 2010

    Voir le résumé
    Voir le résumé
    Cette thèse a pour objectif de reconstruire la conductivité isotrope d'un domaine borné à partir des données sur le bord. Pour cela, nous considérons le problème de conductivité inverse et on utilise les méthodes du Dbar de Nachman et de Brown-Uhlmann. A partir des données aux bords, ces méthodes consistent à calculer une fonction complexe dite la transformée scattering, ensuite calculer la conductivité en résolvant une équation (qui contient la transformée scattering) dite l'équation Dbar.Pour des raisons de stabilité, nous approchons les transformées scattering par plusieurs façons et nous étudions l'erreur de ces approximations. Nous montrons la stabilité des méthodes Dbar via les approximations des transformées scattering. Nous étudions en détails le cas des conductivités radiales et nous obtenons des expressions explicites des approximations des transformées scattering. Nous utilisons la méthode de Vainikko pour la résolution numérique de l'équation Dbar et nous introduisons un schéma de point fixe et nous étudions sa convergence. Les résultats numériques obtenus montrent que la méthode est efficace et justifient nos résultats théoriques.

  • Sur un problème inverse de type Cauchy en théorie des plaques minces élastiques    - Eyimi Minto'o Ebang Azariel Paul  -  20 janvier 2011

    Voir le résumé
    Voir le résumé
    Dans cette thèse, nous résolvons un problème inverse de type Cauchy associé à l'opérateur biharmonique. Pour des données compatibles, comme ce problème est mal posé au sens d'Hadamard, nous utilisons la méthode de régularisation évanescente. Elle est itérative. Son originalité est de faire intervenir, à chaque itération, un problème d'optimisation bien posé qui dépend d'un terme de régularisation dont les effets se dissipent à la limite du processus itératif. Cette limite est la solution du problème de Cauchy. Pour adapter des algorithmes élaborés pour les problèmes de Cauchy associés au laplacien, nous factorisons le problème initial en deux problèmes inverses de Cauchy pour l'opérateur harmonique. Les résultats principaux sont la convergence de la solution discrète vers la solution continue et l'efficacité de la méthode à gérer numériquement, via les éléments finis, le problème factorisé sur différents domaines, même lorsque les données sont bruitées.

|< << 1 2 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales