Vous êtes ici : Accueil > Directeurs de thèse > Torasso Pierre

Torasso Pierre

Les thèses encadrées par "Torasso Pierre"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
4 ressources ont été trouvées. Voici les résultats 1 à 4
Tri :   Date Auteur Titre thèses par page
  • Représentation de Weil d'une paire duale de groupes de similitudes    - Gaborieau Alice  -  01 octobre 2015

    Voir le résumé
    Voir le résumé
    Soit F une extension finie du corps des nombres p-adiques, de corps résiduel Fq. Pour un groupe réductif G sur F, les conjectures de Langlands prédisent une classification des représentations lisses irréductibles de G(F) en termes du groupe dual G^. En particulier, la donnée d’un homomorphisme de groupes duaux de H^ vers G^ doit se traduire par un transfert des représentations de H(F) vers G(F). Pour H = SO2n+1, et G = GL2n, l’injection canonique de H^ vers G^ fournit un transfert des représentations de H(F) vers G(F) qui a été obtenu récemment (pour les représentations génériques) par Jiang et Soudry. Cependant, leurs méthodes utilisent des arguments globaux et l’objet de ce travail consiste à décrire explicitement ce transfert, dans le cas particulier où n = 2 (le cas n = 1 étant déjà connu), et pour des représentations génériques de niveau zéro, lesquelles proviennent essentiellement de représentations du groupe réductif fini SO5 sur le corps résiduel de F. Pour cela, l’isomorphisme entre SO5 et PGSp4 et l’isogénie entre GL4 et GSO6 suggèrent que l’on peut réaliser un transfert entre les représentations de SO5 et celles de GL4 au moyen d’une correspondance de Howe. Nous présentons ici une généralisation des travaux de Srinivasan, qui nous permet d’obtenir la projection uniforme de la représentation de Weil associée à une paire duale de groupes de similitudes lorsque q est assez grand.

  • Étude des restrictions des séries discrètes de certains groupes résolubles et algébriques    - Kouki Sami  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit G un groupe de Lie résoluble connexe et H un de ses sous-groupes fermés connexes d'algèbres de Lie g et h respectivement. On note g* (resp. h*) le dual linéaire de g (resp. h) ). Le sujet de ma thèse consiste à étudier la restriction d'une série discrète π de G, associée à une orbite coadjointe Ω C g*, à H. Si la restriction de π à H se décompose en somme directe de représentations de H avec multiplicités finies, on dit que π est H-admissible. Notons Pg,n : Ω → h* l'application restriction. Il s'agit de démontrer la conjecture suivante due à Michel Duflo : 1. La représentation π est H-admissible si et seulement si l'application moment Pg,n est propre sur l'image. 2. Si π est H-admissible, et si T est une série discrète de H alors sa multiplicité dans la restriction de π à H doit pouvoir se calculer en « quantifiant » l'espace réduit correspondant (qui est compact dans ce cas). Dans cette thèse, nous apportons une réponse positive à cette conjecture dans deux situations, à savoir : (i) Le groupe G est résoluble exponentiel. (ii) Le groupe G est le produit semi direct d'un tore compact par le groupe de Heisenberg et H est un sous-groupe algébrique connexe.

  • Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple    - Ammari Kais  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit K un corps algébriquement clos de caractéristique nulle. Il est bien connu, d'après un résultat de Duflo, Khalgui et Torasso, qu'une algèbre de Lie algébrique quasi-réductive (définie sur K) est stable. La réciproque est fausse en général. Se pose la question de savoir, si pour certaines classes particulières d'algèbres de Lie non réductives, il y a équivalence entre ces deux notions. Plus généralement, les sous-algèbres biparaboliques forment une classe très intéressante (incluant la classe des sous-algèbres paraboliques et de Levi) d'algèbres de Lie qui ne sont pas toutes réductives. Panyushev conjecture que si une sous-algèbre biparabolique est stable, alors son stabilisateur générique est un tore. Cette conjecture peut être reformulée ainsi : une sous-algèbre de Lie biparabolique est stable si et seulement si elle est quasi-réductive. Compte tenu des résultats obtenus par ce dernier pour le cas des sous-algèbres paraboliques d'une algèbre de Lie simple de type A et C, on donne dans cette thèse une réponse positive à cette conjecture pour la classe des sous-algèbres paraboliques d'une algèbre de Lie simple. Au passage, nous montrons également qu'une sous-algèbre de Lie de gl(n, K) qui stabilise une forme bilinéaire alternée de rang maximal et un drapeau en position générique est stable si et seulement si elle est quasi-réductive.

  • Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel    - Liu Gang  -  05 juillet 2011

    Voir le résumé
    Voir le résumé
    Dans cette thèse, nous explicitons la décomposition en irréductibles de la restriction d'une série discrète du groupe SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel et nous interprétons nos résultats dans le cadre de la méthode des orbites, de la géométrie hamiltonienne et de la quantification "Spinc". En particulier nous vérifions que l'admissibilité, c'est à dire le fait d'être une somme directe d'irréductibles intervenant tous avec multiplicité finie, est équivalent au fait que les variétés réduites sont compactes et nous relions les multiplicités à la quantification des variétés réduites.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales