• ENT
  • Intranet
  • Portail étudiant
  • Portail université

Outils accessibilité :

  • Accessibilité |
  • Aller au contenu |
  • Aller au menu
 

UPThèses

Recherche

Ammari Kais

Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple

frDépôt légal électronique

Consulter le texte intégral de la thèse (format PDF)  

Couverture du document

Index

École doctorale :

  • S2IM - Sciences et ingénierie pour l'information, mathématiques

UFR ou institut :

  • UFR des sciences fondamentales et appliquées (SFA)

Secteur de recherche :

  • Mathématiques et leurs interactions

Section CNU :

  • Mathématiques

Résumé

  • Français
  • English
 

Français

Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple

Soit K un corps algébriquement clos de caractéristique nulle. Il est bien connu, d'après un résultat de Duflo, Khalgui et Torasso, qu'une algèbre de Lie algébrique quasi-réductive (définie sur K) est stable. La réciproque est fausse en général. Se pose la question de savoir, si pour certaines classes particulières d'algèbres de Lie non réductives, il y a équivalence entre ces deux notions. Plus généralement, les sous-algèbres biparaboliques forment une classe très intéressante (incluant la classe des sous-algèbres paraboliques et de Levi) d'algèbres de Lie qui ne sont pas toutes réductives. Panyushev conjecture que si une sous-algèbre biparabolique est stable, alors son stabilisateur générique est un tore. Cette conjecture peut être reformulée ainsi : une sous-algèbre de Lie biparabolique est stable si et seulement si elle est quasi-réductive. Compte tenu des résultats obtenus par ce dernier pour le cas des sous-algèbres paraboliques d'une algèbre de Lie simple de type A et C, on donne dans cette thèse une réponse positive à cette conjecture pour la classe des sous-algèbres paraboliques d'une algèbre de Lie simple. Au passage, nous montrons également qu'une sous-algèbre de Lie de gl(n, K) qui stabilise une forme bilinéaire alternée de rang maximal et un drapeau en position générique est stable si et seulement si elle est quasi-réductive.

Mots-clés libres : Algèbre de Lie simple, sous-algèbres paraboliques, indice d'une algèbre de Lie, forme linéaire régulière, algèbre de Lie quasi-réductivite, algèbre de Lie stable.

    Rameau (langage normalisé) :
  • Lie, Algèbres de

English

On the stability of parabolic subalgebras of a simple Lie algebra

Let K be an algebraically closed field of characteristic 0. It is well known by work of Duflo, Khalgui and Torasso that any quasi-reductive algebraic Lie algebra (defined over K) is stable. However, there are stable Lie algebras which are not quasi-reductive. This raises the question, if for some particular class of non-reductive Lie algebras, there is equivalence between stability and quasi-reductivity. More generally, biparabolic subalgebras form a very interesting class (including the class of parabolic subalgebras and of Levi subalgebras) of non-reductive Lie algebras. It was conjectured by Panyushev that these two notions are equivalent for biparabolic subalgebras of a reductive Lie algebra. In this thesis, we give by considering the results of Panyushev for parabolic subalgerbras of simple Lie algebra of type A and C a positive answer to this conjecture in the case of parabolic subalgebras. In passing, we prove that these two notions are equivalent for certain subalgebras of gl(n,K) which stabilize an alternating bilinear form of maximal rank and a flag in generic position.

Keywords : Simple Lie algebras, parabolic Lie algebras, index, regular linear forms, quasi-reductive Lie algebras, stable Lie algebras.

Notice

Diplôme :
Doctorat d'Université
Établissement de soutenance :
Université de Poitiers
Établissement de co-tutelle :
Université de Tunis-El Manar (Tunisie)
UFR, institut ou école :
UFR des sciences fondamentales et appliquées (SFA)
Laboratoire :
Laboratoire de mathématiques et applications - LMA (Poitiers)
Domaine de recherche :
Mathématiques et leurs interactions
Directeur(s) de thèse :
Pierre Torasso, Mohamed Salah Khalgui
Date de soutenance :
01 mars 2014
Président du jury :
Said Zarati
Rapporteurs :
Rupert Wei Tze Yu, Hechmi Ben Messaoud
Membres du jury :
Pierre Torasso, Mohamed Salah Khalgui, Jean-Yves Charbonnel

  • Tweeter
  • Partager
 

Menu :

  • Rechercher par...

    • Années de soutenance
    • Auteurs
    • Directeurs de thèse
    • Écoles doctorales
    • Secteurs de recherche
    • Sections CNU
    • UFR, instituts et Écoles
    • Recherche ciblée
  • À propos d'UPthèses

    • Présentation
    • Mode d'emploi
    • Contacts
  • Voir aussi

    • theses.fr
    • Bibliothèques de l'UP
    • Sudoc

Annexe :

  • Une question ?

    Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales