Vous êtes ici : Accueil > Secteurs de recherche > Mathématiques et leurs interactions

Mathématiques et leurs interactions

Les thèses se rapportant au secteur de recherche "Mathématiques et leurs interactions"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
45 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds    - Cattaneo Alberto  -  18 décembre 2018

    Voir le résumé
    Voir le résumé
    Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1. Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution. Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique.

  • Analyse mathématique et numérique de plusieurs problèmes non linéaires    - Peng Shuiran  -  07 décembre 2018

    Voir le résumé
    Voir le résumé
    Cette thèse est consacrée à l’étude théorique et numérique de plusieurs équations aux dérivées partielles non linéaires qui apparaissent dans la modélisation de la séparation de phase et des micro-systèmes électro-mécaniques (MSEM). Dans la première partie, nous étudions des modèles d’ordre élevé en séparation de phase pour lesquels nous obtenons le caractère bien posé et la dissipativité, ainsi que l’existence de l’attracteur global et, dans certains cas, des simulations numériques. De manière plus précise, nous considérons dans cette première partie des modèles de type Allen-Cahn et Cahn-Hilliard d’ordre élevé avec un potentiel régulier et des modèles de type Allen-Cahn d’ordre élevé avec un potentiel logarithmique. En outre, nous étudions des modèles anisotropes d’ordre élevé et des généralisations d’ordre élevé de l’équation de Cahn-Hilliard avec des applications en biologie, traitement d’images, etc. Nous étudions également la relaxation hyperbolique d’équations de Cahn-Hilliard anisotropes d’ordre élevé. Dans la seconde partie, nous proposons des schémas semi-discrets semi-implicites et implicites et totalement discrétisés afin de résoudre l’équation aux dérivées partielles non linéaire décrivant à la fois les effets élastiques et électrostatiques de condensateurs MSEM. Nous faisons une analyse théorique de ces schémas et de la convergence sous certaines conditions. De plus, plusieurs simulations numériques illustrent et appuient les résultats théoriques.

  • Shape optimisation for the wave-making resistance of a submerged body    - Noviani Evi  -  30 novembre 2018

    Voir le résumé
    Voir le résumé
    Dans cette thèse, nous calculons la forme d’un objet immergé d’aire donnée qui minimise la résistance de vague. Le corps, considéré lisse, avance à vitesse constante sous la surface libre d’un fluide qui est supposé parfait et incompressible. La résistance de vague est la traînée, c’est-à-dire la composante horizontale de la force exercée par le fluide sur l’obstacle. Nous utilisons les équations de Neumann-Kelvin 2D, qui s’obtiennent en linéarisant les équations d’Euler irrotationnelles avec surface libre. Le problème de Neumann-Kelvin est formulé comme une équation intégrale de frontière basée sur une solution fondamentale qui intègre la condition linéarisée à la surface libre. Nous utilisons une méthode de descente de gradient pour trouver un minimiseur local du problème de résistance de vague. Un gradient par rapport à la forme est calculé par la méthode de variation de frontières. Nous utilisons une approche level-set pour calculer la résistance de vague et gérer les déplacements de la frontière de l’obstacle. Nous obtenons une grande variété de formes optimales selon la profondeur de l’objet et sa vitesse.

  • Etude d'un modèle d'équations couplées Cahn-Hilliard/Allen-Cahn en séparation de phase    - Saoud Wafa  -  04 octobre 2018

    Voir le résumé
    Voir le résumé
    Cette thèse est une étude théorique d’un système d’équations de Cahn-Hilliard/Allen-Cahn couplées qui représente un mélange binaire en séparation de phase. Le but principal de l’étude est le comportement asymptotique des solutions en termes d’attracteurs exponentiels/globaux. Pour cette raison, l’existence et l’unicité de la solution sont étudiées tout d’abord. Une des principales applications de ce modèle d’équations est la cristallographie. Dans la première partie de la thèse, on examine le modèle proposé avec des conditions de type Dirichlet sur le bord et une non linéarité régulière de type polynomial : on réussit à trouver un attracteur exponentiel et par conséquence un attracteur global de dimension finie. Une non linéarité singulière de type logarithmique est ensuite prise dans la deuxième partie, cette fonction étant approchée par une suite de fonctions régulières et l’existence d’un attracteur global est démontrée sous des conditions au bord de type Dirichlet. Enfin, dans la dernière partie, le système est couplé avec une équation pour la température: suivant la loi de Fourrier premièrement, puis la loi de type III de la thermo-élasticité. Dans les deux cas, la dynamique de l’équation est étudiée et un attracteur exponentiel est trouvé malgré la difficulté créée par l’équation hyperbolique dans le deuxième cas.

  • Estimation fonctionnelle non paramétrique au voisinage du bord    - Jemai Asma  -  16 mars 2018

    Voir le résumé
    Voir le résumé
    L’objectif de cette thèse est de construire des estimateurs non-paramétriques d’une fonction de distribution, d’une densité de probabilité et d’une fonction de régression en utilisant les méthodes d’approximation stochastiques afin de corriger l’effet du bord créé par les estimateurs à noyaux continus classiques. Dans le premier chapitre, on donne quelques propriétés asymptotiques des estimateurs continus à noyaux. Puis, on présente l’algorithme stochastique de Robbins-Monro qui permet d’introduire les estimateurs récursifs. Enfin, on rappelle les méthodes utilisées par Vitale, Leblanc et Kakizawa pour définir des estimateurs d’une fonction de distribution et d’une densité de probabilité en se basant sur les polynômes de Bernstein. Dans le deuxième chapitre, on a introduit un estimateur récursif d’une fonction de distribution en se basant sur l’approche de Vitale. On a étudié les propriétés de cet estimateur : biais, variance, erreur quadratique intégré (MISE) et on a établi sa convergence ponctuelle faible. On a comparé la performance de notre estimateur avec celle de Vitale et on a montré qu’avec le bon choix du pas et de l’ordre qui lui correspond notre estimateur domine en terme de MISE. On a confirmé ces résultats théoriques à l’aide des simulations. Pour la recherche pratique de l’ordre optimal, on a utilisé la méthode de validation croisée. Enfin, on a confirmé les meilleures qualités de notre estimateur à l’aide des données réelles. Dans le troisième chapitre, on a estimé une densité de probabilité d’une manière récursive en utilisant toujours les polynômes de Bernstein. On a donné les caractéristiques de cet estimateur et on les a comparées avec celles de l’estimateur de Vitale, de Leblanc et l’estimateur donné par Kakizawa en utilisant la méthode multiplicative de correction du biais. On a appliqué notre estimateur sur des données réelles. Dans le quatrième chapitre, on a introduit un estimateur récursif et non récursif d’une fonction de régression en utilisant les polynômes de Bernstein. On a donné les caractéristiques de cet estimateur et on les a comparées avec celles de l’estimateur à noyau classique. Ensuite, on a utilisé notre estimateur pour interpréter des données réelles.

  • Clifford index and gonality of curves on special K3 surfaces    - Ramponi Marco  -  20 décembre 2017

    Voir le résumé
    Voir le résumé
    Nous allons étudier les propriétés des courbes algébriques sur des surfaces K3 spéciales, du point de vue de la théorie de Brill-Noether. La démonstration de Lazarsfeld du théorème de Gieseker-Petri a mis en lumière l'importance de la théorie de Brill-Noether des courbes admettant un plongement dans une surface K3. Nous allons donner une démonstration détaillée de ce résultat classique, inspirée par les idées de Pareschi. En suite, nous allons décrire le théorème de Green et Lazarsfeld, fondamental pour tout notre travail, qui établit le comportement de l'indice de Clifford des courbes sur les surfaces K3. Watanabe a montré que l'indice de Clifford de courbes sur certaines surfaces K3, admettant un recouvrement double des surfaces de del Pezzo, est calculé en utilisant les involutions non-symplectiques. Nous étudions une situation similaire pour des surfaces K3 avec un réseau de Picard isomorphe à U(m), avec m>0 un entier quelconque. Nous montrons que la gonalité et l'indice de Clifford de toute courbe lisse sur ces surfaces, avec une seule exception déterminée explicitement, sont obtenus par restriction des fibrations elliptiques de la surface. Ce travail est basé sur l'article suivant : M. Ramponi, Gonality and Clifford index of curves on elliptic K3 surfaces with Picard number two, Archiv der Mathematik, 106(4), p. 355–362, 2016. Knutsen et Lopez ont étudié en détail la théorie de Brill-Noether des courbes sur les surfaces d'Enriques. En appliquant leurs résultats, nous allons pouvoir calculer la gonalité et l'indice de Clifford de toute courbe lisse sur les surfaces K3 qui sont des recouvrements universels d'une surface d'Enriques. Ce travail est basé sur l'article suivant : M. Ramponi, Special divisors on curves on K3 surfaces carrying an Enriques involution, Manuscripta Mathematica, 153(1), p. 315–322, 2017.

  • Calculs du symbole de kronecker dans le tore    - Dupont Franck  -  04 décembre 2017

    Voir le résumé
    Voir le résumé
    Soit k un corps algébriquement clos de caractéristique 0 et F une suite de n polynômes en intersection complète sur k[X1,...,Xn]. Le Bezoutien de F fournit une forme dualisante sur k[X]/ appelée symbole de Kronecker, qui est un analogue algébrique du résidu. L'objet de ce travail est de construire et calculer le symbole de Kronecker dans le tore (C*)n relativement à une famille f de n polynômes de Laurent en n variables. La famille f possède un nombre fini de zéros et est régulière pour ses polytopes de Newton. La représentation du résidu global dans le tore à l'aide d'un résidu torique, donnée par Cattani et Dickenstein, suggère d'interpréter le symbole de Kronecker dans le tore dans la variété torique projective définie par le polytope P, somme de Minkowski des polytopes de Newton de f. Lorsque P est premier, Roy et Szpirglas ont défini le symbole de Kronecker dans le tore à partir des symboles de Kronecker définis sur les ouverts affines de la variété torique Xp relativement à une famille de n + 1 polynômes homogènes sans zéros communs dans la variété Xp. Nous montrons ici que le cas « P non premier » est réductible au cas précédent en explicitant les morphismes d'éclatement qui traduisent le raffinement de l’éventail de Xp en un éventail simplicial.

  • Méthodes mathématiques et numériques pour la modélisation des déformations et l'analyse de texture. Applications en imagerie médicale    - Chesseboeuf Clément  -  23 novembre 2017

    Voir le résumé
    Voir le résumé
    Nous décrivons une procédure numérique pour le recalage d'IRM cérébrales 3D. Le problème d'appariement est abordé à travers la distinction usuelle entre le modèle de déformation et le critère d'appariement. Le modèle de déformation est celui de l'anatomie computationnelle, fondé sur un groupe de difféomorphismes engendrés en intégrant des champs de vecteurs. Le décalage entre les images est évalué en comparant les lignes de niveau de ces images, représentées par un courant différentiel dans le dual d'un espace de champs de vecteurs. Le critère d'appariement obtenu est non local et rapide à calculer. On se place dans l'ensemble des difféomorphismes pour rechercher une déformation reliant les deux images. Pour cela, on minimise le critère en suivant le principe de l'algorithme sous-optimal. L'efficacité de l'algorithme est renforcée par une description eulérienne et périodique du mouvement. L'algorithme est appliqué pour le recalage d'images IRM cérébrale 3d, la procédure numérique menant à ces résultats est intégralement décrite. Nos travaux concernent aussi l'analyse des propriétés de l'algorithme. Pour cela, nous avons simplifié l'équation représentant l'évolution de l'image et étudié l'équation simplifiée en utilisant la théorie des solutions de viscosité. Nous étudions aussi le problème de détection de rupture dans la variance d'un signal aléatoire gaussien. La spécificité de notre modèle vient du cadre infill, ce qui signifie que la distribution des données dépend de la taille de l'échantillon. L'estimateur de l'instant de rupture est défini comme le point maximisant une fonction de contraste. Nous étudions la convergence de cette fonction et ensuite la convergence de l'estimateur associé. L'application la plus directe concerne l'estimation de changement dans le paramètre de Hurst d'un mouvement brownien fractionnaire. L'estimateur dépend d'un paramètre p > 0 et nos résultats montrent qu'il peut être intéressant de choisir p < 2.

  • Étude des fibres singulières des systèmes de Mumford impairs et pairs    - Fittouhi Yasmine  -  20 janvier 2017

    Voir le résumé
    Voir le résumé
    Cette thèse est consacrée à l'étude des fibres de l'application moment du système de Mumford (pair ou impair) d'ordre g>0. Ces fibres sont paramétrées par des courbes hyperelliptiques de genre g. Comme l'a démontré Mumford, la fibre au-dessus d'une telle courbe lisse est la jacobienne de la courbe, moins son diviseur thêta. Nous décrivons les fibres au-dessus d'une courbe singulière, à la fois de manière algébrique et géométrique. Pour ce faire, nous utilisons de façon essentielle les g champs de vecteurs du système de Mumford, qui définissent une stratification de chaque fibre, où chaque strate est isomorphe à une strate particulière (dite maximale) d'une fibre d'un système de Mumford d'ordre inférieur. Sur cette strate, tous les champs de vecteurs du système de Mumford sont linéairement indépendants en tout point. Nous décrivons cette strate comme un ouvert de la jacobienne généralisée d'une courbe hyperelliptique singulière. Nous montrons également que sur la jacobienne généralisée, les champs de Mumford sont des champs invariants par translation.

  • Régularité de problèmes à données dans les espaces pondérés par la distance au bord via l'inégalité uniforme de Hopf et le principe de dualité    - Berdan Nada El  -  05 décembre 2016

    Voir le résumé
    Voir le résumé
    Cette thèse, comporte deux parties distinctes. Dans la première partie, on étudie l'existence et l'inexistence d'une inégalité qu'on a appelée l'inégalité de Hopf Uniforme (IHU), pour une équation linéaire de la forme Lv = f à coefficients bornés mesurables et sous les conditions de Dirichlet homogènes. L'IHU est une variante du principe de maximum, on l'a appliquée dans la preuve de la régularité W1;p 0 pour un problème semi-linéaire singulier : Lu = F(u) où les coefficients de L sont dans l'espace vmor (fonctions à oscillation moyenne évanescente) et F(u) est singulier en u = 0 F(0) = +∞. De plus, si les coefficients sont lipschitziens, on prouve que la régularité optimale du gradient de la solution u est bmor (fonctions à oscillation moyenne bornée i.e Grad u dans bmor). Dans la seconde partie, on s'intéresse à la régularité du système d'élasticité (équations stationnaires des ondes élastiques) avec une fonction source singulière au sens qu'elle n’est qu'intégrable par rapport à la fonction distance au bord du domaine. Via la dualité, nous montrons, selon ~f , que le problème admet une solution dite très faible dont le gradient n'est pas nécessairement intégrable sur tout le domaine mais uniquement localement. Nous déterminons aussi les fonctions vectorielles ~f pour lesquelles, ~u a son gradient intégrable sur tout l'espace de travail.

|< << 1 2 3 4 5 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales