Vous êtes ici : Accueil > Directeurs de thèse > Duprez Daniel

Duprez Daniel

Les thèses encadrées par "Duprez Daniel"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
6 ressources ont été trouvées. Voici les résultats 1 à 6
Tri :   Date Auteur Titre thèses par page
  • Transformation de polyols en phase aqueuse par catalyse hétérogène bifonctionnelle    - Vilcocq Léa  -  17 octobre 2012

    Voir le résumé
    Voir le résumé
    Une nouvelle voie de synthèse de carburants à partir de biomasse a été récemment proposée : la transformation directe du sorbitol (sucre hydrogéné d'origine lignocellulosique) en alcanes légers (six atomes de carbone au maximum) en phase aqueuse par catalyse hétérogène bifonctionnelle métal/acide, suivant la réaction : C6O6H14 + 6 H2 → C6H14 + 6 H2O (déshydratation/hydrogénation du sorbitol en hexane). L'enjeu de la thèse est d'identifier des systèmes catalytiques bifonctionnels stables, actifs et sélectifs pour les hydrocarbures à 5 ou 6 atomes de carbone, valorisables dans le pool essence. Les premiers systèmes étudiés sont des catalyseurs à base de platine et de ruthénium supportés sur silice-alumine. Ces catalyseurs ne sont pas stables en milieu hydrothermal et catalysent des réactions indésirables de rupture C-C : la décarbonylation dans le cas du platine (conduisant au CO2) et l'hydrogénolyse ou la méthanation dans le cas du ruthénium. C'est pourquoi de nouveaux systèmes catalytiques ont été préparés par des mélanges mécaniques de catalyseurs métalliques (Pt, Pd, Ir) déposés sur zircone et d'oxydes tungstés (ZrO2-WOx, Al2O3-WOx, TiO2-WOx). Ces systèmes catalytiques présentent une stabilité en phase aqueuse meilleure que pour les catalyseurs à base de silice-alumine. Les sélectivités varient en fonction de la nature de l'oxyde et de la nature du métal utilisés. En particulier, Un nouveau système catalytique, Pt/ZrO2 + TiO2-WOx, (brevet 12/01.546) s'est révélé actif et très sélectif pour les composés en C6. Enfin, les mécanismes réactionnels mis en jeu pour la réaction de transformation du sorbitol ont été discutés en s'appuyant sur des tests de réactivité modèle.

  • Activité et sélectivité de catalyseurs de stockage-réduction des NOx pour la dépollution automobile. Influence de la nature des réducteurs présents    - Masdrag Liliana  -  28 juin 2012

    Voir le résumé
    Voir le résumé
    Ce travail porte sur le procédé NSR (NOx Storage-Réduction) de dépollution des gaz d'échappement automobile Diesel. Des catalyseurs contenant 2,12% Pt déposés sur alumine, cérine-zircone ou cérine modifiée, ont été caractérisés et évalués dans des conditions NSR, avec un regard particulier sur la sélectivité de la réduction des NOx. Les tests catalytiques sont effectués dans des conditions complexes : cycles 60s de stockage (mélange pauvre)/ 4s de réduction (mélange riche), avec des traces de réducteurs dans la voie pauvre et d’oxydant dans la voie riche. Des sélectivités importantes en N2O (gaz à effet de serre) ont pu être observées. Les émissions de N2O varient en fonction de la nature du support, de la température et des réducteurs mis en œuvre (C3H6, CO, H2 ou mélange C3H6+CO+H2). Dans certaines conditions, la présence de réducteur dans les phases pauvres contribue à la majorité du N2O émis lors des cycles NSR. Ces valeurs sont en bon accord avec les résultats obtenus en parallèle en régime stationnaire (SCR). A 200°C, H2 donne la plus grande sélectivité en N2O, essentiellement à cause de la réduction partielle des NOx en milieu pauvre. En revanche, à 300°C, C3H6 est le réducteur le plus sélectif en N2O, toujours avec une forte contribution des phases pauvres. Les résultats sont plus homogènes avec les catalyseurs supportés sur oxydes redox car ils favorisent la transformation des réducteurs dans la voie riche (réactions du gaz à l’eau et reformage de C3H6), conduisant à mélange réducteur moyenné. Les propriétés redox du support permettent aussi de limiter les émissions de NH3.

  • Préparation, caractérisation et activité de matériaux pour la réduction des NOx par l'ammoniac ; Association au catalyseur de stockage-réduction    - Berland Sébastien  -  01 décembre 2011

    Voir le résumé
    Voir le résumé
    Ce travail porte sur la dépollution des gaz d'échappement automobile et plus particulièrement sur la combinaison de deux procédés de réduction des NOx : les systèmes NSR (NOx Storage-Reduction) et SCR (Selective Catalytic Reduction). En condition de fonctionnement, les catalyseurs NSR sont susceptibles d'émettre de l'ammoniac, qui est aussi un bon réducteur des NOx. L'ajout d'un matériau acide et actif en SCR-NH3 sur un second lit catalytique en aval, permet d'utiliser cet ammoniac pour augmenter la réduction globale des NOx. Le catalyseur NSR choisi est du type Pt-Ba/Al qui, lors du fonctionnement du système (alternance de phases oxydantes de stockage des NOx et pulses courts réducteurs), conduit à une sélectivité en ammoniac élevée lorsque H2 est utilisé comme réducteur. Pour le second lit catalytique, trois types de matériau ont été étudiés : matériaux industriels, WO3/Ce-Zr de composition Ce-Zr variable, et des matériaux synthétisés au laboratoire (voie sol-gel) : à partir d’une base alumine, les incorporations successives de Ce, Ti, et Si ont permis de formuler des matériaux actifs, améliorés par ajout de tungstène. Les matériaux ont été caractérisés par différentes techniques : DRX, BET, mesures d’acidité (stockage NH3, adsorption de pyridine), de réductibilité (RTP-H2, CSO), test de réactivité (NH3+NOx, NH3 + O2),... L'association des deux procédés (NSR + SCR) a montré que sur les matériaux de SCR-NH3, les NOx sont réduits selon deux réactions : la "fast SCR-NH3" (à 200, 300 et 400°C), et "standard SCR-NH3" (à 200°C). De plus, une partie de l’ammoniac peut aussi réagir avec O2 pour donner N2 (300-400°C) et le stockage de NH3 à 400°C reste insuffisant.

  • Réduction sélective catalytique des NOx par des composés oxygènes    - Flura Aurélien  -  01 juillet 2011

    Voir le résumé
    Voir le résumé
    Les moteurs Diesels connaissent un intérêt récent tout particulier car ils rejettent moins de CO2 que les moteurs essences à puissance égale, du fait qu'ils travaillent en "mélange pauvre", i.e. en excès d'oxygène. Ils présentent cependant l'inconvénient de former des NOx (NO et NO2), qui sont des polluants difficilement réductibles en azote en milieu oxydant. L'objectif de cette thèse est de proposer un catalyseur actif en réduction des NOx par l'éthanol (EtOH-SCR) à 200°C, qui est la température moyenne d'un échappement de moteur Diesel. Afin de répondre à cette problématique, un catalyseur connu pour être actif à 300°C en EtOH-SCR a été choisi : Ag/Al2O3. La première partie de ce manuscrit détaille les modifications apportées au catalyseur de référence (Ag/Al2O3) afin d'élargir sa fenêtre d'activité vers les basses températures. Le support alumine a été modifié par des ajouts de métaux de transition (Mn, Fe, Ti, Zn), puis un second métal a été ajouté en plus de l'argent sur Al2O3 (Ru, Ir, Cu, Co, Gd, In et Sc). Cette partie montre que l'activité des catalyseurs de type Ag/Al2O3 est limitée jusqu'à 300°C : le maximum de conversion des NOx en azote (34%) est obtenu avec le catalyseur modifié avec le ruthénium Ag-Ru(0,5%pds)/Al2O3. Les parties suivantes tentent d'expliquer pourquoi l'activité de ces catalyseurs est limitée à basse température. L'éthanol se transforme en acétaldéhyde et éthylène (entre autre) au cours de la réaction de réduction des NOx. Ces deux produits peuvent réagir avec les NOx pour conduire à la formation d'azote, mais la réaction de SCR avec l'acétaldéhyde ne débute qu'à 300°C, tandis que celle avec l'éthylène débute à 550°C. Seule la réaction...

  • Optimisation de la synthèse de matériaux poreux de haute surface, composés d'oxydes simples (SiO2, TiO2, Al2O3) et d'oxydes mixtes (perovskites), pour des applications en catalyse hétérogène    - Bonne Magali  -  29 octobre 2010

    Voir le résumé
    Voir le résumé
    Le sujet du Doctorat porte sur l'utilisation des voies de synthèse par mésostructuration pour la préparation de supports de catalyseurs poreux. Trois systèmes ont été abordés pendant la durée du Doctorat, mais l'objectif restait le même dans les trois cas puisqu'il s'agissait de contrôler la morphologie du support afin de permettre par la suite l'optimisation du catalyseur final. La première partie du travail a été consacrée à l'étude de la synthèse d'oxydes mixtes en milieu confiné (i.e. dans la porosité d'un support hôte). Des composés de type pérovskite (ABO3, avec A le lanthane et B un métal de transition) ont été préparés et dispersés sur différents supports siliciques de textures différentes. L'approche adoptée pour la synthèse, une méthode originale d'autocombustion développée dans le cadre du Doctorat, a permis d'obtenir des nanoparticules d'oxyde mixte de taille restreinte (< 4 nm), dispersées de manière homogène dans la porosité du support hôte. De telles tailles sont rarement rapportées pour des oxydes mixtes de ce type. Des tailles de domaine cristallin de l'ordre de 15-30 nm pour ce type d'oxyde mixte sont généralement observées. Bien que l'étude de l'activité de ces solides n'ait pas été abordée dans le cadre de ce travail, la mobilité de l'oxygène dans ces matériaux est largement supérieure à celle mesurée pour des pérovskites massiques ce qui montre clairement que ces nanocristaux se comportent différemment des cristaux massiques. Dans une deuxième partie, la synthèse, les propriétés texturales et structurales, ainsi que l'activité de nanocomposites SiO2 - TiO2 sont présentés. Par dépôt contrôlé d'un précurseur organique de titane, il est possible d'obtenir des nanocristaux d'anatase accessibles dans la porosité d'un support mésoporeux. Le mode de synthèse utilisé permet de déposer des quantités élevées d'oxyde de titane (jusqu'à 55 %pds), sans obstruer la porosité du support ni altérer les propriétés physiques du composite final qui présente toujours une surface spécifique élevée. Le maintien de propriétés attractives peut être attribué à la taille limitée des particules de titane générées, qui est généralement de l'ordre de 4 nm ou moins. Comme dans le cas de pérovskites, ces nanoparticules présentent une mobilité d'oxygène élevée, et des tests de réactivité ont montré que le contrôle de la taille de particule permettait une modulation de l'interaction métal - support (effet SMSI) lorsqu'un métal noble était déposé à sa surface. La dernière partie du Doctorat portait sur la synthèse d'alumine, une autre phase importante pour la catalyse hétérogène. Différentes voies de synthèses par mésostructuration ont été abordées, ce qui a permis de mettre en évidence l'intérêt de ces procédures pour l'obtention de solides présentant des surfaces spécifiques élevées et des tailles de pores élevées. Des résultats préliminaires ont aussi montré la flexibilité de ces voies de synthèse pour la fonctionnalisation de la surface de l'alumine (par incorporation d'un métal de transition ou d'un métal noble lors de la synthèse).

  • Oxydation du méthane à basse et haute température, application de procédés plasma et/ou catalyse    - Baylet Alexandre  -  26 septembre 2008

    Voir le résumé
    Voir le résumé
    Les travaux de recherche de cette thèse concernent les problèmes liés à l'oxydation du CH4, gaz à effet de serre notoire provenant dans le cas présent du transport routier, et plus précisément l'élimination du CH4 issu des gaz d'échappement des moteurs de type Diesel. L'oxydation totale du CH4 a été étudiée : - A basse température par procédé Plasma/Catalyse : de tous les systèmes testés, la combinaison d'un système plasma froid de type DBD coaxial associé à un catalyseur Pd/Al2O3 en position POSTplasma permet l'oxydation de 30 % du CH4 avec une énergie déposée de 225 J.L-1 (Q=600 mL.min-1, N2/O2/CO2/H2O/0,5%CH4, T=250 °C, H=150 mm) tout en minimisant la production de O3 et en ne générant pas de NOx. Cependant, les puissances consommées (> kW) sont trop importantes pour une éventuelle application sur véhicules. - A basse température sur catalyseurs Pd/Al2O3 (température de light-off) : L'étape de ré-oxydation de Pd° est plus rapide sur des petites particules mais l'activation du CH4 y est plus difficile en raison d'une stabilisation plus importante des petites particules de PdO par le support. Une série de pulses réducteurs (CH4 ou C3H6) en conditions isothermes permet d'activer le catalyseur et d'atteindre un maximum de conversion. - A haute température sur catalyseurs Pd/(oxyde modifié) (pics haute température) : la synthèse d'une alumine dopée (La, Sr, Ba, Mn) avec une surface spécifique de l'ordre de 50 m2.g-1 permet d'atteindre des taux de conversion de 90 % du CH4 à 700 °C tout en maintenant une excellente stabilité thermique. Un mécanisme redox de type Mars et van-Krevelen, avec transfert de l'oxygène du support vers les particules de palladium est proposé pour expliquer les différences en termes d'activité catalytique et de stabilité thermique en comparaison au catalyseur de référence Pd/Al2O3.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales