Vous êtes ici : Accueil > Directeurs de thèse > Rakotoson Jean-Michel

Rakotoson Jean-Michel

Les thèses encadrées par "Rakotoson Jean-Michel"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
3 ressources ont été trouvées. Voici les résultats 1 à 3
Tri :   Date Auteur Titre thèses par page
  • Régularité de problèmes à données dans les espaces pondérés par la distance au bord via l'inégalité uniforme de Hopf et le principe de dualité    - Berdan Nada El  -  05 décembre 2016

    Voir le résumé
    Voir le résumé
    Cette thèse, comporte deux parties distinctes. Dans la première partie, on étudie l'existence et l'inexistence d'une inégalité qu'on a appelée l'inégalité de Hopf Uniforme (IHU), pour une équation linéaire de la forme Lv = f à coefficients bornés mesurables et sous les conditions de Dirichlet homogènes. L'IHU est une variante du principe de maximum, on l'a appliquée dans la preuve de la régularité W1;p 0 pour un problème semi-linéaire singulier : Lu = F(u) où les coefficients de L sont dans l'espace vmor (fonctions à oscillation moyenne évanescente) et F(u) est singulier en u = 0 F(0) = +∞. De plus, si les coefficients sont lipschitziens, on prouve que la régularité optimale du gradient de la solution u est bmor (fonctions à oscillation moyenne bornée i.e Grad u dans bmor). Dans la seconde partie, on s'intéresse à la régularité du système d'élasticité (équations stationnaires des ondes élastiques) avec une fonction source singulière au sens qu'elle n’est qu'intégrable par rapport à la fonction distance au bord du domaine. Via la dualité, nous montrons, selon ~f , que le problème admet une solution dite très faible dont le gradient n'est pas nécessairement intégrable sur tout le domaine mais uniquement localement. Nous déterminons aussi les fonctions vectorielles ~f pour lesquelles, ~u a son gradient intégrable sur tout l'espace de travail.

  • Analyse de quelques équations différentielles à retard et EDP modélisant les instabilités de surfaces    - Alriyabi Ali  -  08 mars 2013

    Voir le résumé
    Voir le résumé
    Cette thèse est divisée en deux parties principales : La première partie concerne la déformation plastique d'un matériau contraint. Nous commençons cette partie par une introduction physique sur la dislocation et son rôle dans l'étude de la déformation plastique. Nous exposons ensuite deux types de modélisation de la déformation plastique ce qui nous conduit à deux équations différentielles à retard de Mecking-Lüke-Grilhé. Nous présentons une analyse mathématique complète des deux modèles linéaire et non linéaire. Nous terminons cette partie par des tests numériques et une comparaison des deux modèles. La deuxième partie de la thèse traite l'instabilité de Rayleigh-Plateau. Cette étude porte sur les instabilités de surface d'un pore cylindrique sans contraintes. Nous nous intéressons à une EDP parabolique non linéaire d'ordre quatre, obtenue à partir d'une équation d'évolution des films minces. Le résultat principal est l'existence globale de la solution et la convergence vers la valeur moyenne de la donnée initiale en temps long. L'étude théorique est aussi appuyée comme dans la première partie par une validation numérique.

  • Problèmes de valeurs propres pour des opérateurs multivoques    - Chrayteh Houssam  -  08 mars 2012

    Voir le résumé
    Voir le résumé
    L'objectif de notre recherche est d'étudier l'existence et la régularité des solutions pour des problèmes de valeurs propres faisant intervenir un opérateur →p-multivoque A : V → P(V*) sur un domaine régulier Ω C Rᶰ. Par l'intermédiaire des N-fonctions, nous construisons un opérateur →p-multivoque de Leray-Lions "fortement monotone" sur un espace d'Orlicz-Sobolev anisotrope. Nous signalons que la formulation théorique des problèmes associés à cet opérateur repose essentiellement sur la notion de sous-différentielle de Clarke, pour cela, nous donnons des nouvelles méthodes variationelles qui correspondent à la résolution de ces problèmes dans le cas "sous-critique" dans lequel la compacité joue un rôle important puis dans le cas critique lorsque nous perdons la compacité. Différentes applications sont données pour illustrer nos résultats abstraits, par exemple, un opérateur anisotrope aux exposants variables et un opérateur avec un poids de type Hardy.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales