Vous êtes ici : Accueil > Directeurs de thèse > Horna Sébastien

Horna Sébastien

Les thèses encadrées par "Horna Sébastien"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
2 ressources ont été trouvées. Voici les résultats 1 à 2
Tri :   Date Auteur Titre thèses par page
  • Reconstructions 3D tissulaires basées sur le métabolisme sous-jacent exploré en spectroscopie par résonance magnétique multi-noyaux    - Gerbaud Sylvain  -  22 novembre 2023

    Voir le résumé
    Voir le résumé
    Dans le milieu médical, les spécialistes en neuroscience utilisent une représentation 3D du cortex cérébral pour évaluer l’étendue d’une lésion, ou pour détecter des maladies neurodégénératives telles qu’Alzheimer ou la sclérose en plaques. Dans ce contexte, la 3D offre une visualisation globale de l’anatomie voire permet le recours à la simulation. Néanmoins, les représentations 3D utilisées sont majoritairement sous la forme de grille de voxels en raison des systèmes d’acquisition (scanners, IRM, etc.). La résolution de la grille n’est pas forcément adaptée car elle induit une visualisation en « marches d’escalier » et approxime tout calcul géométrique, comme la mesure du volume d’une tumeur, à la taille des voxels. Pour obtenir une représentation plus fine, il est possible d’utiliser des maillages 3D mais les méthodes standards actuelles n’arrivent pas à représenter correctement les lésions et ne vérifient pas la cohérence des voisinages entre les différents tissus anatomiques afin de valider la reconstruction (substance blanche, substance grise, liquide céphalo-rachidien…). Par ailleurs, les modèles ne prévoient pas l’incorporation d’informations non géométriques pourtant utiles aux spécialistes. Dans les travaux décrits dans cette thèse, nous proposons un modèle dédié à l’étude du cerveau (en particulier les tumeurs cérébrales). Ce modèle est suffisamment riche pour permettre de regrouper les données anatomiques et toutes les informations issues du contexte d’application, par exemple en spectroscopie par résonance magnétique (SRM), les concentrations des métabolites. Dans un premier temps, nous présentons une nouvelle méthode de reconstruction qui produit un maillage volumique représentant les tissus cérébraux, enrichi par des informations de sémantique (appartenance à un tissu) et topologiques. Ces dernières sont décrites dans notre modèle par les cartes généralisées. Notre méthode utilise un ensemble de contraintes de cohérence définies en 3D, et exploite les connaissances et informations médicales pour guider la reconstruction. Dans un deuxième temps, nous utilisons ce modèle pour une application de visualisation et de représentation de données acquises par SRM. Cela permet notamment d’interpréter les données spectroscopiques à la lueur des types de tissus couverts et de leur métabolisme normal. Enfin, nous étudions les possibilités d’exploitation de notre principe de reconstruction dans de nouveaux cadres applicatifs (par exemple, données d’acquisition de tomographie pour l’horlogerie).

  • Partition spatiale contrainte et convexe pour la simulation basée rayons    - Maria Maxime  -  09 novembre 2016

    Voir le résumé
    Voir le résumé
    Les méthodes basées rayons sont connues pour simuler précisément les phénomènes d'ondes acoustiques, thermiques, radios ou encore optiques. L'efficacité de telles méthodes réside dans leur capacité à déterminer rapidement l'intersection la plus proche entre un rayon et les primitives géométriques composant l'environnement de simulation. Le plus souvent, une structure accélératrice est utilisée pour réduire la complexité algorithmique de la recherche. Ces trente dernières années, de nombreuses structures performantes ont été proposées. Cependant, toutes ont des inconvénients en fonction du type d'application et de la configuration de la scène. Nous proposons d'explorer une voie peu étudiée jusqu'alors, en utilisant une partition de l'espace convexe et contrainte (CCSP) comme structure accélératrice. Ce type de partition se distingue des structures classiques par plusieurs concepts apportant des propriétés uniques et intéressantes. Dans un premier temps, nous proposons une nouvelle structure accélératrice, de type CCSP, spécialement dédiée à la simulation en environnement architectural. Ensuite, nous utilisons ces résultats pour généraliser l'approche à des scènes quelconques. Nous nous concentrons notamment sur l'utilisation d'une tétraédrisation de Delaunay contrainte comme structure accélératrice et proposons un nouvel algorithme de parcours.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales