Vous êtes ici : Accueil > Directeurs de thèse > Emamirad Hassan

Emamirad Hassan

Les thèses encadrées par "Emamirad Hassan"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
2 ressources ont été trouvées. Voici les résultats 1 à 2
Tri :   Date Auteur Titre thèses par page
  • Sur l'approximation rationnelle pour le semi-groupe de transport    - Cherif Mohamed Amine  -  09 juillet 2010

    Voir le résumé
    Voir le résumé
    La notion de l'approximation rationnelle est normalement conçue pour la discrétisation en temps. Dans cette thèse nous mélangeons cette notion avec la notion de la convergence au sens de Kato qui découle d'une discrétisation en espace pour l'équation de transport neutronique. Nous appliquons cette procedure aux schémas d'Euler explicite et implicite, Crank-Nicolson et Prédicateur-Correcteur qui ont le degré de convergence 1,2 et 3 au sens de l'approximation rationnelle. Pour démontrer la convergence nous utiliserons le théorème de Cherno et nous donnons aussi des illustrations numérique pour justifier ces degrés de convergence. Dans le dernier chapitre nous donnons quelques nouvelles généralisations des théorèmes de point fixe de type Schauder et de type Krasnoselskii qui se basent sur la notion de la compacité faible sur des espaces Fréchet ayant la propriété de Dunford- Pettis et sur la notion de la U-équicontraction.

  • Nouvelle approche de la méthode D-Bar pour la résolution du problème de conductivité inverse    - El Arwadi Toufic  -  23 juin 2010

    Voir le résumé
    Voir le résumé
    Cette thèse a pour objectif de reconstruire la conductivité isotrope d'un domaine borné à partir des données sur le bord. Pour cela, nous considérons le problème de conductivité inverse et on utilise les méthodes du Dbar de Nachman et de Brown-Uhlmann. A partir des données aux bords, ces méthodes consistent à calculer une fonction complexe dite la transformée scattering, ensuite calculer la conductivité en résolvant une équation (qui contient la transformée scattering) dite l'équation Dbar.Pour des raisons de stabilité, nous approchons les transformées scattering par plusieurs façons et nous étudions l'erreur de ces approximations. Nous montrons la stabilité des méthodes Dbar via les approximations des transformées scattering. Nous étudions en détails le cas des conductivités radiales et nous obtenons des expressions explicites des approximations des transformées scattering. Nous utilisons la méthode de Vainikko pour la résolution numérique de l'équation Dbar et nous introduisons un schéma de point fixe et nous étudions sa convergence. Les résultats numériques obtenus montrent que la méthode est efficace et justifient nos résultats théoriques.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales