Vous êtes ici : Accueil > Directeurs de thèse > Can Fabien

Can Fabien

Les thèses encadrées par "Can Fabien"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
5 ressources ont été trouvées. Voici les résultats 1 à 5
Tri :   Date Auteur Titre thèses par page
  • Impact des minéraux sodium et phosphore sur les propriétés de catalyseurs Cu/FER dédiés à la réduction sélective des oxydes d'azote par l'ammoniac    - Tarot Marie-Laure  -  04 mai 2018

    Voir le résumé
    Voir le résumé
    Afin de limiter les rejets de polluants dans l’atmosphère par les véhicules, les normes Euro ont été mises en place en Europe à partir des années 1990. Ces normes sont de plus en plus strictes. Par exemple, pour les cas des poids lourds, le maximum d’émission des NOx a été divisé par cinq lors du passage Euro V (2009) à Euro VI (2014). Parallèlement à cela, certaines flottes captives de poids lourds roulent au 100 % biodiesel. Or, ce carburant contient des minéraux (Na, K, P) qui peuvent interagir avec la ligne de dépollution des gaz d’échappement. Dans ces travaux, l’étude a porté sur l’impact de Na et P déposés séparément ou simultanément sur des catalyseurs de réduction catalytique sélective des oxydes d’azote par l’ammoniac (NH3-SCR) à base de zéolithe Ferrierite (FER) contenant du cuivre. En mettant en relation les activités catalytiques en NH3-SCR et les différentes caractérisations mises en œuvre avant et après ajout des minéraux, il a été conclu que l’ajout de sodium entrainait une perte d’activité à basse température (< 300 °C) liée à l’empoisonnement des sites acides du catalyseur, et que la perte d’activité à haute température (> 450 °C) est liée à la formation de CuO. Cette formation de CuO est due à un échange entre le cuivre et le sodium lors de l’empoisonnement par voie aqueuse. Pour l’empoisonnement au phosphore, la désactivation à basse température (< 300 °C) apparait liée à une interaction entre le cuivre et le phosphore. Cette interaction entraine une augmentation de la température de réduction du cuivre. L’ajout simultané de sodium et phosphore entraine une désactivation des catalyseurs plutôt similaire à celle du phosphore qu’à celle du sodium.

  • Étude de la réduction catalytique sélective (SCR) des NOx par un mélange éthanol-ammoniac    - Barreau Mathias  -  24 octobre 2017

    Voir le résumé
    Voir le résumé
    La Réduction Catalytique Sélective des NOx par NH3 est un procédé efficace de dépollution des gaz. Cependant, pour une application sur véhicules Diesel, l'activité à basse température (175-250°C, phase de démarrage du véhicule) reste limitée. De plus, les catalyseurs de NH3-SCR sont sensibles au rapport NO2/NOx, avec un optimum pour NO2/NOx = 0,5. Or, à basse température, la proportion de NO2 est faible car le catalyseur d’oxydation (DOC) placé en amont est également peu actif. L'éthanol (EtOH) est un autre réducteur possible, principalement avec des catalyseurs Ag/Al2O3. Ce système présente également d'une activité limitée à basse température, bien que l'oxydation de EtOH s'accompagne de la formation de NO2. Dans ces travaux, l'association de EtOH et NH3 pour la SCR de NO sur catalyseur Ag/Al2O3 a été étudié. Un effet de synergie a été obtenu, avec un gain important d'activité à basse température. Ce gain ne provient pas directement d'une réaction entre NH3 et EtOH ou ses sous-produits d'oxydation (CH3CHO, CO…), ni uniquement grâce à la réaction entre NO2 (formé par réaction de NO avec EtOH) et NH3. La caractérisation des espèces adsorbées par IRTF et des tests de (H2+NH3)-SCR ont permis de conclure que les espèces H*, provenant de la déshydrogénation de l'éthanol, réagissent avec les NOx pour conduire à des espèces HNOx très réactives avec NH3. Finalement, la mise en œuvre d'un double-lit (2%Ag/Al2O3 + catalyseur de NH3-SCR), afin d'utiliser NH3, NO et NO2 restants, a permis d'obtenir une conversion NOx comprise entre 46 et 95% entre 175 et 250°C. Ce système permet donc une conversion des NOx élevée à basse température en s'affranchissant du NO2 procuré par le DOC.

  • Impact de l'utilisation de l'urée pour le procédé de réduction sélective des NOx par NH3 en milieu oxydant    - Sénèque Mickaël  -  15 décembre 2015

    Voir le résumé
    Voir le résumé
    Ce travail porte sur la dépollution des gaz d’échappement automobile, et plus particulièrement sur le traitement des oxydes d’azotes issus des moteurs Diesel par le procédé de réduction catalytique sélective (SCR) des NOx par NH3/urée. Néanmoins, l’utilisation directe de NH3 dans un véhicule n’étant pas envisageable, l’emploi d’une solution aqueuse d’urée, précurseur de NH3, est l’option choisie par les acteurs de l’industrie automobile. Pour être efficace, le procédé nécessite la décomposition de l’urée en NH3 par deux réactions successives (via un intermédiaire HNCO), dans la phase gaz ou sur le catalyseur de SCR. Le premier objectif de ce travail a été de concevoir un montage réactionnel permettant de comparer directement les activités catalytiques de matériaux sous forme de poudre, en utilisant soit l’ammoniac (réducteur usuel à l’échelle du laboratoire), soit l’urée (réducteur réellement embarqué dans les véhicules). Deux catalyseurs références, l’un de type oxyde et l’autre de type zéolite, ont été sélectionnés pour leur efficacité élevée en SCR-NH3. Les propriétés redox et acides de ces matériaux ont été caractérisées (mesure de l’équilibre NO  NO2 ; SCO-NH3, TPD-NH3…), puis, leurs efficacités en conditions de SCR ont été examinées afin d’observer l’impact de l’utilisation de l’urée par rapport à celle de l’ammoniac. La comparaison entre les deux réducteurs a mis en évidence que le temps de résidence de l’urée (temps de parcours entre l’injection de l’urée et le catalyseur) est un paramètre clé dans le procédé de SCR-urée. La diminution de ce temps peut entrainer une chute significative de l’activité DeNOx, en particulier sur le catalyseur oxyde. Celle-ci a pu être attribuée à une limitation de la disponibilité de NH3, en lien avec une insuffisance de l’hydrolyse de l’intermédiaire HNCO. Deux autres phénomènes ont également été mis en évidence sur ce matériau : une réactivité entre HNCO et NO2 conduisant à la formation NO, et une compétition entre les réactions de décomposition de l’urée et les réactions de SCR.

  • Application de la technique d'échange isotopique à l'étude de systèmes catalytiques innovants : activation et mobilité d'O2 sur YSZ au sein d’un double-lit et réactivité de l’azote dans les matériaux nitrures pour la catalyse hétérogène    - Richard Mélissandre  -  01 décembre 2015

    Voir le résumé
    Voir le résumé
    Ce travail porte sur l’étude de systèmes catalytiques innovants par la technique d’échange isotopique (EI) permettant d’apprécier des propriétés fondamentales (activation des molécules en surface, mobilité et réactivité des atomes de réseau) pour comprendre les mécanismes de réaction mis en jeu en catalyse hétérogène et développer des systèmes plus performants. Aussi, l’identification d’espèces adsorbées intermédiaires est possible en couplant la spectrométrie de masse (analyse de la phase gaz) à l’observation de la surface catalytique par spectroscopie DRIFT. L’EI 16O/18O montre des effets de dispersion ou de synergie de LaMnO3 (LM) supportée sur YSZ ou TiO2 expliquant les performances de cette structure pérovskite pour l’oxydation catalytique de C7H8 via un mécanisme suprafacial. L’activité en EI C16O2/C18O2 démontre la mobilité exceptionnelle des atomes O de réseau de YSZ dès 150 °C via la formation d’espèces (hydrogéno)carbonates en surface. En catalyse d’oxydation, à T < 800 °C, cette mobilité est pourtant limitée par l’activation d’O2 à la surface de YSZ. La solution proposée ici est la génération préalable d’une espèce oxygène réactive sur un lit de matériau réductible type LM. Le double-lit LM-YSZ montre d’excellentes performances pour abaisser la température d’oxydation de CH4 à 425 °C via un mécanisme Mars van Krevelen (MvK) où les atomes O de YSZ participent à la réaction par l’intermédiaire d’espèces formiates. L’EI 14N/15N est également utilisé dans ce travail pour analyser la réactivité des atomes N de réseau dans les nitrures métalliques. En particulier, Co3Mo3N et Ni2Mo3N montrent des propriétés remarquables, dépendant de la méthode de préparation ou du prétraitement appliqué. Leur comportement suggère la participation des atomes N dans la réaction de synthèse de NH3 sur le principe d’un mécanisme MvK.

  • Préparation, caractérisation et activité de matériaux pour la réduction des NOx par l'ammoniac ; Association au catalyseur de stockage-réduction    - Berland Sébastien  -  01 décembre 2011

    Voir le résumé
    Voir le résumé
    Ce travail porte sur la dépollution des gaz d'échappement automobile et plus particulièrement sur la combinaison de deux procédés de réduction des NOx : les systèmes NSR (NOx Storage-Reduction) et SCR (Selective Catalytic Reduction). En condition de fonctionnement, les catalyseurs NSR sont susceptibles d'émettre de l'ammoniac, qui est aussi un bon réducteur des NOx. L'ajout d'un matériau acide et actif en SCR-NH3 sur un second lit catalytique en aval, permet d'utiliser cet ammoniac pour augmenter la réduction globale des NOx. Le catalyseur NSR choisi est du type Pt-Ba/Al qui, lors du fonctionnement du système (alternance de phases oxydantes de stockage des NOx et pulses courts réducteurs), conduit à une sélectivité en ammoniac élevée lorsque H2 est utilisé comme réducteur. Pour le second lit catalytique, trois types de matériau ont été étudiés : matériaux industriels, WO3/Ce-Zr de composition Ce-Zr variable, et des matériaux synthétisés au laboratoire (voie sol-gel) : à partir d’une base alumine, les incorporations successives de Ce, Ti, et Si ont permis de formuler des matériaux actifs, améliorés par ajout de tungstène. Les matériaux ont été caractérisés par différentes techniques : DRX, BET, mesures d’acidité (stockage NH3, adsorption de pyridine), de réductibilité (RTP-H2, CSO), test de réactivité (NH3+NOx, NH3 + O2),... L'association des deux procédés (NSR + SCR) a montré que sur les matériaux de SCR-NH3, les NOx sont réduits selon deux réactions : la "fast SCR-NH3" (à 200, 300 et 400°C), et "standard SCR-NH3" (à 200°C). De plus, une partie de l’ammoniac peut aussi réagir avec O2 pour donner N2 (300-400°C) et le stockage de NH3 à 400°C reste insuffisant.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales