Vous êtes ici : Accueil > Sections CNU > 25 - Mathématiques

25 - Mathématiques

Les thèses se rapportant à la section CNU "25 - Mathématiques"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
25 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Sur l'intégrabilité algébrique des systèmes de Bogoyavlenskij-Itoh déformés à 5 particules    - León Gil Carlos Augusto  -  10 décembre 2020

    Voir le résumé
    Voir le résumé
    Cette thèse a pour but l'étude de l'intégrabilité algébrique des systèmes de Bogoyavlenskij-Itoh déformés à 5 particules. Nous nous appuyons sur la méthode décrite par l'analyse de Kowalevski-Painlevé pour établir ce résultat d'intégrabilité. De plus, nous montrons que la nullité ou non des paramètres de déformation a des fortes répercussions sur la géométrie du diviseur à l'infini de la fibre générique du système en question. Ceci permet d'exhiber sept configurations de courbes différentes, sur les Jacobiennes (hyperelliptiques) de dimension 2.

  • On birational transformations and automorphisms of some hyperkähler manifolds    - Beri Pietro  -  12 octobre 2020

    Voir le résumé
    Voir le résumé
    Mon travail de thèse porte sur les doubles EPW sextiques, une famille de variétés hyperkähleriennes qui, dans le cas général, sont équivalentes par déformation au schéma de Hilbert de deux points sur une surface K3. Notamment j'ai utilisé le lien que ces variétés ont avec les variétés de Gushel-Mukai, qui sont des variétés de Fano dans une Grassmannienne si leur dimension est plus grande que deux, des surface K3 si la dimension est deux. Le premier chapitre contient quelques rappels de théorie des équations de Pell et des réseaux, qui sont fondamentals pour l’étude des variétés hyperkähleriennes. Ensuite je rappelle la construction qui associe un revêtement double à un faisceau sur une variété normale. Dans le deuxième chapitre j’aborde les variétés hyperkähleriennes et je décris leurs premières propriétés ; j’introduis aussi le premier cas de variété hyperkählerienne qui a été étudiée, les surfaces K3. Cette famille de surfaces correspond aux variétés hyperkähleriennes en dimension deux. Je présente ensuite brièvement certains des derniers résultats dans ce domaine, notamment je définis différents espaces de modules de variétés hyperkähleriennes et je décris l’action d’un automorphisme sur le deuxième groupe de cohomologie d’une variété hyperkähleriennes. Les outils introduits dans le chapitre précédent ne fournissent pas de description géométrique de l'action de l'automorphisme sur la variété, dans le cas où la variété est un schéma de Hilbert de points sur une surface K3. Dans le troisième chapitre, j’introduis donc une description géométrique à une certaine déformation près. Cette déformation prend en compte la structure du schéma de la variété de Hilbert. Pour ce faire, j'introduis un isomorphisme entre une composante connexe de l'espace de modules des variétés de type K3[n] avec une polarization, et l'espace de modules des variétés de même type avec une involution dont le rang de l'invariant est un. Il s’agit d’une généralisation d’un résultat obtenu par Boissière, An. Cattaneo, Markushevich et Sarti en dimension deux. Les deux premières parties de ce chapitre sont un travail en collaboration avec Alberto Cattaneo. Dans le quatrième chapitre, je définis les EPW sextiques, en présentant l'argument de O'Grady, qui montre qu'un double revêtement d'un EPW sextique dans le cas général est une variété de type K3[2]. Ensuite, je présente les variétés Gushel-Mukai, en mettant l'accent sur leur lien avec les EPW sextiques ; cette approche a été introduite par O'Grady, poursuivie par Iliev et Manivel et systématisée par Kuznetsov et Debarre. Dans le cinquième chapitre, j’utilise les outils introduits dans le quatrième chapitre dans le cas où on peut associer une surface K3 à une EPW sextique X. Dans ce cas je donne des conditions explicites sur le groupe de Picard de la surface pour que X soit une variété hyperkählerienne. Cela permet d'utiliser le théorème de Torelli pour une surface K3 pour démontrer l'existence de quelques automorphismes sur X. Je donne des bornes sur la structure d'un sous-groupe d'automorphismes d'une EPW sextique sous conditions d'existence d'un point fixe pour l'action du groupe. Toujours dans le cas d'existence d'une surface K3 associée à une EPW sextique X, j’améliore la borne obtenue précédemment sur les automorphismes de X, en donnant un lien explicite avec le nombre de coniques sur la surface K3. Je montre que la symplecticité d'un automorphisme sur X dépend de la symplecticité d'un automorphisme correspondant sur la surface K3. Le sixième chapitre est un travail en collaboration avec Alberto Cattaneo. J'étudie le groupe d'automorphismes birationels sur le schéma de Hilbert des points sur une surface projective K3, dans le cas générique. Cela généralise le résultat obtenu en dimension deux par Debarre et Macrì. Ensuite j’étudie les cas où il existe un modèle birationel où ces automorphismes sont réguliers. Je décris de façon géométrique quelques involutions dont on avait prouvé l'existence auparavant.

  • Action du groupe de Klein sur une surface K3    - Menegatti Paolo  -  22 novembre 2019

    Voir le résumé
    Voir le résumé
    L’objet de ce travail est la classification des actions du groupe de Klein G≃(ℤ/2ℤ)² sur une surface K3, X, où G contient une involution non-symplectique qui agit trivialement sur le réseau de Neron-Severi de X, ainsi que la détermination du nombre de points qui en composent le lieu fixe. Cela est accompli avec des méthodes purement algébriques, grâce à la théorie de Smith, qui permet de relier la cohomologie du lieu fixe H*(Xᴳ, F₂) à la G-cohomologie de H*(X, F₂). Nous commençons par déterminer les différentes possibilités pour la cohomologie du G-module H²(X, F₂) (et par conséquent la cohomologie du lieu fixe Xᴳ), en donnant aussi des résultats partiels pour le cas plus général G≃(ℤ/pℤ)ⁿ. Ensuite nous étudions l’extension du réseau de cohomologie H²(X, ℤ) induite par l’action de G et nous donnons une formule reliant le nombre des point fixes qui composent Xᴳ, à certains invariants numériques de l’ex-tension: notamment les dimensions des groupes discriminants des réseaux invariants, mais aussi un nouvel invariant numérique, que nous montrons être indépendant des autres et nécessaire pour le calcul du lieu fixe. Pour conclure, en utilisant le théorème de Torelli, nous déterminons tous les possibilités pour une action de G sur X et nous donnons aussi des exemples géométriques avec les fibrations elliptiques, confirmant les résultats prouvés.

  • Kostant principal filtration and paths in weight lattice    - Kusumastuti Nilamsari  -  24 octobre 2019

    Voir le résumé
    Voir le résumé
    Il existe plusieurs filtrations intéressantes définies sur la sous-algèbre de Cartan d'une algèbre de Lie simple complexe issues de contextes très variés : l'une est la filtration principale qui provient du dual de Langlands, une autre provient de l'algèbre de Clifford associée à une forme bilinéaire invariante non-dégénérée, une autre encore provient de l'algèbre symétrique et la projection de Chevalley, deux autres enfin proviennent de l'algèbre enveloppante et des projections de Harish-Chandra. Il est connu que toutes ces filtrations coïncident. Ceci résulte des travaux de Rohr, Joseph et Alekseev-Moreau. La relation remarquable entre les filtrations principale et de Clifford fut essentiellement conjecturée par Kostant. L'objectif de ce mémoire de thèse est de proposer une nouvelle démonstration de l'égalité entre les filtrations symétrique et enveloppante pour une algèbre de Lie simple de type A ou C. Conjointement au résultat et Rohr et le théorème d'Alekseev-Moreau, ceci fournit une nouvelle démonstration de la conjecture de Kostant, c'est-à-dire une nouvelle démonstration du théorème de Joseph. Notre démonstration est très différentes de la sienne. Le point clé est d'utiliser une description explicite des invariants via la représentation standard, ce qui est possible en types A et C. Nous décrivons alors les images de leurs différentielles en termes d'objects combinatoires, appelés des chemins pondérés, dans le graphe cristallin de la représentation standard. Les démonstrations pour les types A et C sont assez similaires, mais ne nouveaux phénomènes apparaissent en type C, ce qui rend la démonstration nettement plus délicate dans ce cas.

  • Représentations distinguées et conjecture de Prasad et Takloo-Bighash    - Chommaux Marion  -  22 octobre 2019

    Voir le résumé
    Voir le résumé
    La thèse de Marion Chommaux a pour cadre le « programme de Langlands local », un domaine particulièrement actif et exigeant de la théorie des représentations des groupes p-adiques. Une branche en plein développement en est le « programme de Langlands relatif' », dont une des figures majeures est Dipendra Prasad. Ce dernier a proposé avec Takloo-Bighash en 2011 une conjecture concernant la distinction des séries discrètes des formes intérieures d'un groupe linéaire général sur un corps p-adique par le centralisateur des inversibles d'une extension quadratique de ce corps: la conjecture s'énonce en termes d'invariants galoisiens subtils. Dans sa thèse Marion résout complétement cette conjecture pour les représentations de Steinberg, et elle la démontre pour les cuspidales de niveau zéro dans le cas non-déployé. Dans ce cas un résultat notable est qu'elle obtient même un contre-exemple à une forme plus générale de la conjecture en question. Les techniques utilisées sont diverses. Dans le premier chapitre sur les représentations de Steinberg, c'est le lemme géométrique de Bernstein-Zelevinsky qui joue un rôle prépondérant dans le résultat de classification, mais des invariants analytiques tels que les fonctions L font leur apparition. Dans le second chapitre il s'agit de la théorie des types de Bushnell-Kutzko (plus précisément celle des paires admissibles de Bushnell-Henniart) ainsi que la géométrie de l'immeuble de Bruhat-Tits qui sont les éléments essentiels en théorie des représentations. Une fois la classification des cuspidales de niveau zéro distinguées obtenue, Marion réduit habilement la vérification de la conjecture du côté galoisien à un résultat de Fröhlich et Queyrut.

  • Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds    - Cattaneo Alberto  -  18 décembre 2018

    Voir le résumé
    Voir le résumé
    Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n points sur une surface K3, pour n > 1. Dans la première partie de la thèse, nous classifions les automorphismes du schéma de Hilbert de n points sur une surface K3 projective générique, dont le réseau de Picard est engendré par un fibré ample. Nous montrons que le groupe des automorphismes est soit trivial soit engendré par une involution non-symplectique et nous déterminons des conditions numériques et géométriques pour l’existence de l’involution. Dans la deuxième partie, nous étudions les automorphismes non-symplectiques d’ordre premier des variétés de type K3^[n]. Nous déterminons les propriétés du réseau invariant de l'automorphisme et de son complément orthogonal dans le deuxième réseau de cohomologie de la variété et nous classifions leurs classes d’isométrie. Dans le cas des involutions, e des automorphismes d’ordre premier impair pour n = 3, 4, nous montrons que toutes les actions en cohomologie dans notre classification sont réalisées par un automorphism non-symplectique sur une variété de type K3^[n]. Nous construisons explicitement l’immense majorité de ces automorphismes et, en particulier, nous présentons la construction d’un nouvel automorphisme d’ordre trois sur une famille de dimension dix de variétés de Lehn-Lehn-Sorger-van Straten de type K3^[4]. Pour n < 6, nous étudions aussi les espaces de modules de dimension maximal des variétés de type K3^[n] munies d’une involution non-symplectique.

  • Clifford index and gonality of curves on special K3 surfaces    - Ramponi Marco  -  20 décembre 2017

    Voir le résumé
    Voir le résumé
    Nous allons étudier les propriétés des courbes algébriques sur des surfaces K3 spéciales, du point de vue de la théorie de Brill-Noether. La démonstration de Lazarsfeld du théorème de Gieseker-Petri a mis en lumière l'importance de la théorie de Brill-Noether des courbes admettant un plongement dans une surface K3. Nous allons donner une démonstration détaillée de ce résultat classique, inspirée par les idées de Pareschi. En suite, nous allons décrire le théorème de Green et Lazarsfeld, fondamental pour tout notre travail, qui établit le comportement de l'indice de Clifford des courbes sur les surfaces K3. Watanabe a montré que l'indice de Clifford de courbes sur certaines surfaces K3, admettant un recouvrement double des surfaces de del Pezzo, est calculé en utilisant les involutions non-symplectiques. Nous étudions une situation similaire pour des surfaces K3 avec un réseau de Picard isomorphe à U(m), avec m>0 un entier quelconque. Nous montrons que la gonalité et l'indice de Clifford de toute courbe lisse sur ces surfaces, avec une seule exception déterminée explicitement, sont obtenus par restriction des fibrations elliptiques de la surface. Ce travail est basé sur l'article suivant : M. Ramponi, Gonality and Clifford index of curves on elliptic K3 surfaces with Picard number two, Archiv der Mathematik, 106(4), p. 355–362, 2016. Knutsen et Lopez ont étudié en détail la théorie de Brill-Noether des courbes sur les surfaces d'Enriques. En appliquant leurs résultats, nous allons pouvoir calculer la gonalité et l'indice de Clifford de toute courbe lisse sur les surfaces K3 qui sont des recouvrements universels d'une surface d'Enriques. Ce travail est basé sur l'article suivant : M. Ramponi, Special divisors on curves on K3 surfaces carrying an Enriques involution, Manuscripta Mathematica, 153(1), p. 315–322, 2017.

  • Calculs du symbole de kronecker dans le tore    - Dupont Franck  -  04 décembre 2017

    Voir le résumé
    Voir le résumé
    Soit k un corps algébriquement clos de caractéristique 0 et F une suite de n polynômes en intersection complète sur k[X1,...,Xn]. Le Bezoutien de F fournit une forme dualisante sur k[X]/ appelée symbole de Kronecker, qui est un analogue algébrique du résidu. L'objet de ce travail est de construire et calculer le symbole de Kronecker dans le tore (C*)n relativement à une famille f de n polynômes de Laurent en n variables. La famille f possède un nombre fini de zéros et est régulière pour ses polytopes de Newton. La représentation du résidu global dans le tore à l'aide d'un résidu torique, donnée par Cattani et Dickenstein, suggère d'interpréter le symbole de Kronecker dans le tore dans la variété torique projective définie par le polytope P, somme de Minkowski des polytopes de Newton de f. Lorsque P est premier, Roy et Szpirglas ont défini le symbole de Kronecker dans le tore à partir des symboles de Kronecker définis sur les ouverts affines de la variété torique Xp relativement à une famille de n + 1 polynômes homogènes sans zéros communs dans la variété Xp. Nous montrons ici que le cas « P non premier » est réductible au cas précédent en explicitant les morphismes d'éclatement qui traduisent le raffinement de l’éventail de Xp en un éventail simplicial.

  • Étude des fibres singulières des systèmes de Mumford impairs et pairs    - Fittouhi Yasmine  -  20 janvier 2017

    Voir le résumé
    Voir le résumé
    Cette thèse est consacrée à l'étude des fibres de l'application moment du système de Mumford (pair ou impair) d'ordre g>0. Ces fibres sont paramétrées par des courbes hyperelliptiques de genre g. Comme l'a démontré Mumford, la fibre au-dessus d'une telle courbe lisse est la jacobienne de la courbe, moins son diviseur thêta. Nous décrivons les fibres au-dessus d'une courbe singulière, à la fois de manière algébrique et géométrique. Pour ce faire, nous utilisons de façon essentielle les g champs de vecteurs du système de Mumford, qui définissent une stratification de chaque fibre, où chaque strate est isomorphe à une strate particulière (dite maximale) d'une fibre d'un système de Mumford d'ordre inférieur. Sur cette strate, tous les champs de vecteurs du système de Mumford sont linéairement indépendants en tout point. Nous décrivons cette strate comme un ouvert de la jacobienne généralisée d'une courbe hyperelliptique singulière. Nous montrons également que sur la jacobienne généralisée, les champs de Mumford sont des champs invariants par translation.

  • Automorphismes des variétés de Kummer généralisées    - Tari Kévin  -  08 décembre 2015

    Voir le résumé
    Voir le résumé
    Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action d'ordre premier sur le réseau de Beauville-Bogomolov. Dans un premier temps, nous donnons les lieux fixes des automorphismes naturels de cette forme. Par la suite, nous développons des outils sur les réseaux en vue de les appliquer à nos variétés. Une étude réticulaire des tores complexes de dimension 2 permet de mieux comprendre les automorphismes naturels sur les variétés de type Kummer. Nous classifions finalement tous les automorphismes décrits précédemment sur ces variétés. En application de nos résultats sur les réseaux, nous complétons également la classification des automorphismes d'ordre premier sur les variétés équivalentes par déformations à des schémas de Hilbert de 2 points sur des surfaces K3, en traitant le cas de l'ordre 5 qui restait ouvert.

|< << 1 2 3 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales