Vous êtes ici : Accueil > Sections CNU > Section 25 - Mathématiques

Section 25 - Mathématiques

Les thèses se rapportant à la section CNU "Section 25 - Mathématiques"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
14 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Automorphismes des variétés de Kummer généralisées    - Tari Kévin  -  08 décembre 2015

    Voir le résumé
    Voir le résumé
    Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action d'ordre premier sur le réseau de Beauville-Bogomolov. Dans un premier temps, nous donnons les lieux fixes des automorphismes naturels de cette forme. Par la suite, nous développons des outils sur les réseaux en vue de les appliquer à nos variétés. Une étude réticulaire des tores complexes de dimension 2 permet de mieux comprendre les automorphismes naturels sur les variétés de type Kummer. Nous classifions finalement tous les automorphismes décrits précédemment sur ces variétés. En application de nos résultats sur les réseaux, nous complétons également la classification des automorphismes d'ordre premier sur les variétés équivalentes par déformations à des schémas de Hilbert de 2 points sur des surfaces K3, en traitant le cas de l'ordre 5 qui restait ouvert.

  • Représentation de Weil d'une paire duale de groupes de similitudes    - Gaborieau Alice  -  01 octobre 2015

    Voir le résumé
    Voir le résumé
    Soit F une extension finie du corps des nombres p-adiques, de corps résiduel Fq. Pour un groupe réductif G sur F, les conjectures de Langlands prédisent une classification des représentations lisses irréductibles de G(F) en termes du groupe dual G^. En particulier, la donnée d’un homomorphisme de groupes duaux de H^ vers G^ doit se traduire par un transfert des représentations de H(F) vers G(F). Pour H = SO2n+1, et G = GL2n, l’injection canonique de H^ vers G^ fournit un transfert des représentations de H(F) vers G(F) qui a été obtenu récemment (pour les représentations génériques) par Jiang et Soudry. Cependant, leurs méthodes utilisent des arguments globaux et l’objet de ce travail consiste à décrire explicitement ce transfert, dans le cas particulier où n = 2 (le cas n = 1 étant déjà connu), et pour des représentations génériques de niveau zéro, lesquelles proviennent essentiellement de représentations du groupe réductif fini SO5 sur le corps résiduel de F. Pour cela, l’isomorphisme entre SO5 et PGSp4 et l’isogénie entre GL4 et GSO6 suggèrent que l’on peut réaliser un transfert entre les représentations de SO5 et celles de GL4 au moyen d’une correspondance de Howe. Nous présentons ici une généralisation des travaux de Srinivasan, qui nous permet d’obtenir la projection uniforme de la représentation de Weil associée à une paire duale de groupes de similitudes lorsque q est assez grand.

  • Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs    - Tête Claire  -  21 octobre 2014

    Voir le résumé
    Voir le résumé
    Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper aux idéaux premiers et ceci afin de manier des objets élémentaires et explicites. Parmi ces objets, figurent les complexes algébriques de Koszul et de Cech dont nous étudions les propriétés cohomologiques grâce à des résultats simples portant sur la cohomologie du totalisé d'un bicomplexe. Dans le cadre de la cohomologie de Cech, nous avons établi la longue suite exacte de Mayer-Vietoris avec un traitement reposant uniquement sur le maniement des éléments. Une autre notion importante est celle de dimension de Krull. Sa caractérisation en termes de monoïdes bords permet de montrer de manière expéditive le théorème d'annulation de Grothendieck en cohomologie de Cech. Nous fournissons également un algorithme permettant de compléter un polynôme homogène en un h.s.o.p.. La profondeur est intimement liée à la théorie des résolutions libres/projectives finies, en témoigne le théorème de Ferrand-Vasconcelos dont nous rapportons une généralisation due à Jouanolou. Par ailleurs, nous revenons sur des résultats faisant intervenir la profondeur des idéaux caractéristiques d'une résolution libre finie. Nous revisitons, dans un cas particulier, une construction due à Tate permettant d'expliciter une résolution projective totalement effective de l'idéal d'un point lisse d'une hypersurface. Enfin, nous abordons la théorie de la régularité en dimension 1 via l'étude des idéaux inversibles et fournissons un algorithme implémenté en Magma calculant l'anneau des entiers d'un corps de nombres.

  • Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N)    - Rajhi Anis  -  01 octobre 2014

    Voir le résumé
    Voir le résumé
    Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe GL(2) sur un corps p-adique. Plus précisément, on a construit une tour projective d'espaces fibrés au-dessus du 1-squelette de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. On a montré que toute représentation cuspidale π de GL(n) se plonge avec multiplicité 1 dans le premier espace de cohomologie à support compact du k-ième étage de la tour, où k est le conducteur de π. Dans la deuxième partie on a construit un espace W au-dessus de la subdivision barycentrique de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. Pour étudier les espaces de cohomologie à support compact d'un G-complexe simplicial propre X muni d'un recouvrement équivariant assez particulier, où G est un groupe localement compact totalement discontinu, on a montré l'existence d'une suite spactrale dans la catégorie des représentations lisses de G qui converge vers la cohomologie à support compact de X. En s'appuyant sur ce dernier résultat, on a calculé la cohomologie à support compact de l'espace W comme représentation lisse de GL(n) puis on a montrer que les types cuspidaux de niveau 0 de GL(n) apparaissent avec multiplicité fini dans la cohomologie de certain complexes fini construit au niveau résiduel. Comme conséquence, on montre que les représentations cuspidales de niveau 0 de GL(n) apparaissent dans la cohomologie de W.

  • Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3    - Comparin Paola  -  26 septembre 2014

    Voir le résumé
    Voir le résumé
    Une surface K3 est une surface X complexe compacte projective lisse qui a fibré canonique trivial et h0;1(X) = 0. Dans cette thèse on s'intéresse à deux problèmes pour ces surfaces. D'abord on considère des surfaces K3 obtenues comme recouvrement double de P2 ramifié le long d'une sextique. On classifie les fibrations elliptiques sur ces surfaces et leur groupe de Mordell-Weil, c'est-à-dire le groupe des sections. Vu que une section de 2-torsion définit une involution de la surface (dite involution de van Geemen-Sarti), alors en classifiant les fibrations et les section de 2-torsion on obtient une classification complète des involutions de van Geemen-Sarti sur ce type de surfaces K3. On montre aussi comment calculer l'équation de la fibration et on étudie le quotient par l'involution de van Geemen-Sarti. Ensuite on montre la construction de Berglund-Hübsch-Chiodo-Ruan (BHCR): il s'agit d'une construction miroir qui part d'un polynôme dans un espace projectif à poids et d'un groupe d'automorphismes (avec certaines propriétés) et qui donne, en toute dimension, des paires de variétés Calabi-Yau. Ces deux variétés sont l'une miroir de l'autre en sense classique. On classifie toutes les paires de surfaces K3 obtenues avec cette construction qui aient en plus un automorphisme non{symplectique d'ordre premier p > 3. Pour les surfaces K3 une autre notion de symétrie miroir a été introduite par Dolgachev et Nikulin : la symétrie pour K3 polarisées (LPK3). On montre dans la thèse comment polariser les surfaces obtenues avec la construction BHCR et on preuve que deux surfaces miroir au sense BHCR, dûment polarisées, appartiennent à deux familles miroir LPK3.

  • Étude des restrictions des séries discrètes de certains groupes résolubles et algébriques    - Kouki Sami  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit G un groupe de Lie résoluble connexe et H un de ses sous-groupes fermés connexes d'algèbres de Lie g et h respectivement. On note g* (resp. h*) le dual linéaire de g (resp. h) ). Le sujet de ma thèse consiste à étudier la restriction d'une série discrète π de G, associée à une orbite coadjointe Ω C g*, à H. Si la restriction de π à H se décompose en somme directe de représentations de H avec multiplicités finies, on dit que π est H-admissible. Notons Pg,n : Ω → h* l'application restriction. Il s'agit de démontrer la conjecture suivante due à Michel Duflo : 1. La représentation π est H-admissible si et seulement si l'application moment Pg,n est propre sur l'image. 2. Si π est H-admissible, et si T est une série discrète de H alors sa multiplicité dans la restriction de π à H doit pouvoir se calculer en « quantifiant » l'espace réduit correspondant (qui est compact dans ce cas). Dans cette thèse, nous apportons une réponse positive à cette conjecture dans deux situations, à savoir : (i) Le groupe G est résoluble exponentiel. (ii) Le groupe G est le produit semi direct d'un tore compact par le groupe de Heisenberg et H est un sous-groupe algébrique connexe.

  • Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple    - Ammari Kais  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit K un corps algébriquement clos de caractéristique nulle. Il est bien connu, d'après un résultat de Duflo, Khalgui et Torasso, qu'une algèbre de Lie algébrique quasi-réductive (définie sur K) est stable. La réciproque est fausse en général. Se pose la question de savoir, si pour certaines classes particulières d'algèbres de Lie non réductives, il y a équivalence entre ces deux notions. Plus généralement, les sous-algèbres biparaboliques forment une classe très intéressante (incluant la classe des sous-algèbres paraboliques et de Levi) d'algèbres de Lie qui ne sont pas toutes réductives. Panyushev conjecture que si une sous-algèbre biparabolique est stable, alors son stabilisateur générique est un tore. Cette conjecture peut être reformulée ainsi : une sous-algèbre de Lie biparabolique est stable si et seulement si elle est quasi-réductive. Compte tenu des résultats obtenus par ce dernier pour le cas des sous-algèbres paraboliques d'une algèbre de Lie simple de type A et C, on donne dans cette thèse une réponse positive à cette conjecture pour la classe des sous-algèbres paraboliques d'une algèbre de Lie simple. Au passage, nous montrons également qu'une sous-algèbre de Lie de gl(n, K) qui stabilise une forme bilinéaire alternée de rang maximal et un drapeau en position générique est stable si et seulement si elle est quasi-réductive.

  • Paires admissibles d'une algèbre de Lie simple complexe et W-algèbres finies    - Sadaka Guilnard  -  06 décembre 2013

    Voir le résumé
    Voir le résumé
    Soient g une algèbre de Lie simple complexe et e un élément nilpotent de g. Nous nous intéressons dans ce mémoire à la question (soulevée par Premet) d'isomorphisme entre les W-algèbres finies construites à partir de certaines sous-algèbres nilpotentes de g dites e-admissibles. Nous introduisons les notions de paire et graduation e-admissibles. Nous montrons ensuite que la W-algèbre associée à une paire e-admissible possède des propriétés similaires à celle introduite par Gan et Ginzburg. De plus, nous définissons une relation d'équivalence sur l'ensemble des paires admissibles. Nous montrons alors que si deux paires sont équivalentes, alors les W-algèbres associées sont isomorphes. Nous introduisons enfin les notions de graduation et paire admissibles b-maximales et nous montrons que les paires admissibles b-maximales sont équivalentes entre elles. Comme conséquence de ce résultat, nous retrouvons un résultat de Brundan et Goodwin sur les bonnes graduations. Dans une dernière partie, nous considérons des cas particuliers pour lesquels nous pouvons apporter une réponse complète à la question d'isomorphisme.

  • Étude de la dynamique symbolique des développements en base négative, système de Lyndon    - Nguema Ndong Florent  -  26 septembre 2013

    Voir le résumé
    Voir le résumé
    Ce travail est consacré à l'étude de systèmes de Lyndon (pour la relation d'ordre alterné) et à la dynamique symbolique des développements des nombres en base négative. Pour un réel ß > 1 fixé, nous construisons un code préfixe récurrent positif permettant non seulement de montrer l'intrinsèque ergodicité du —ß-shift mais aussi de déterminer la fonction zêta qui lui est associée. Nous étudions les conditions pour lesquelles le —ß-shift possède la spécification. En outre, lorsque ß est strictement plus petit que le nombre d'or, le langage du —ß-shift admet des mots intransitifs. Cet état de fait engendre dans le système dynamique des cylindres négligeables par rapport à la mesure d'entropie maximale. Ces cylindres génèrent sur Iß=[—ß/(ß+1),1/(ß+1)[ de petits intervalles de mesure nulle (la mesure considérée étant l'unique mesure ergodique sur Iß). Nous en faisons une étude détaillée, en particulier nous déterminons ces intervalles "trous". Par ailleurs, nous étudions l'unicité des systèmes de numération des entiers relatifs en base négative et nous montrons qu'à chaque mot de Lyndon correspond un tel système.

  • Étude de quelques liens entre les groupes de rang de Morley fini et les groupes algébriques linéaires    - Tindzogho Ntsiri Jules  -  25 juin 2013

    Voir le résumé
    Voir le résumé
    Cette thèse traite essentiellement des liens qui peuvent exister entre les groupes de rang de Morley fini et les groupes algébriques linéaires. En effet, nous y établissons quelques propriétés algébriques aux K-groupes ; d'ailleurs une étude de linéarité sur ces groupes est dressée et permet en particulier d'obtenir une généralisation du théorème de Levi sur la décomposition des groupes algébriques. Ensuite, nous étudions dans un univers de rang de Morley fini, une action définissable de SL2(K) sur un groupe abélien SL2(K)-minimal V où K est un corps définissable de caractéristique positive p > 0. À cet effet, nous montrons que le rang de Morley rk(V ) de V est pair et multiple de rk(K). Enfin, nous analysons sous quelles conditions, étant donné G un groupe algébrique sur un corps algébriquement clos de caractéristique non nulle, le quotient G=Z(G) est définissablement linéaire. Par ailleurs, nous montrons sous certaines hypothèses le groupe des automorphismes définissables d'un K*-groupe simple est interprétable.

|< << 1 2 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales