Vous êtes ici : Accueil > Auteurs > Richard Aurélie

Richard Aurélie

La thèse soutenue par "Richard Aurélie"

accès internet    accès intranet    confidentialité
1 ressource a été trouvée.
  • Décomposition des rotations nD et arithmétisation des cercles    - Richard Aurélie  -  06 décembre 2011

    Voir le résumé
    Voir le résumé
    Cette thèse est basée sur deux axes principaux : la décomposition des rotations nD et le processus d'arithmétisation des cercles. D'une part, estimer les paramètres des rotations est utile dans de nombreux domaines d'applications. Les méthodes existantes ne peuvent pas être étendues à la dimension n et/ou ne sont pas robustes au bruit. Dans cette thèse, nous étudions les rotations nD bruitées et nous proposons des algorithmes permettant de les décomposer et d'estimer leurs paramètres. Les deux premières méthodes utilisent respectivement l'algèbre géométrique et la décomposition de Schur des matrices. Elles estiment les paramètres (plans et angles) des rotations à partir de n vecteurs et leurs images par cette rotation. Notre troisième algorithme décompose les rotations en rotations planes de même angle (rotations isoclines). D'autre part, le processus d'arithmétisation par des schémas numériques est souvent utilisé en géométrie discrète car il permet de donner un équivalent discret à une courbe continue. Nous étudions l'application de ce processus à l'équation différentielle du cercle dans le cas du schéma de Heun. Nous présentons notamment des résultats sur la connexité des arcs de cercles générés par cette méthode. Des résultats sur l'ordre de l'erreur de la méthode sont finalement proposés.

|< << 1 >> >|

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales