Vous êtes ici : Accueil > Auteurs > Dehainsala Djagwa

Dehainsala Djagwa

La thèse soutenue par "Dehainsala Djagwa"

accès internet    accès intranet    confidentialité
1 ressource a été trouvée.
  • Sur l'intégrabilité algébrique des réseaux de Toda : cas particuliers des réseaux d3(2) et c2(1)    - Dehainsala Djagwa  -  28 novembre 2008

    Voir le résumé
    Voir le résumé
    Cette thèse a pour but l'étude de deux réseaux de Toda périodiques duaux avec deux degrés de liberté, ceux qui sont associés aux algèbres de Lie affine d3(2) et c2(1). Pour chacun de ces systèmes, nous démontrons d'abord son intégralité algébrique. Ceci permet ensuite d' utiliser de la géométrie algébrique pour décrire les surfaces invariantes génériques, leur compactification en tant que variétés abéliennes, la configuration des courbes à l'infini. Comme application, nous démontrons dans le premier cas une caractérisation des surfaces invariantes génériques comme jacobiennes de surfaces de Riemann de genre 2, un morphisme vers le système de Mumford et une nouvelle équation de Lax, qui permet d'écrire la solution explicite en termes de fonctions thêta. Pour le deuxième cas, nous démontrons que les surfaces invariantes génériques sont des variétés abéliennes polarisées de type (1,2), que nous caractérisons comme des variétés de Prym, associées à des surfaces de Riemann de genre 3, munies d'une involution

|< << 1 >> >|

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales