Sur l'intégrabilité algébrique des réseaux de Toda : cas particuliers des réseaux d3(2) et c2(1)
frConsulter le texte intégral de la thèse (format PDF)
Cette thèse a pour but l'étude de deux réseaux de Toda périodiques duaux avec deux degrés de liberté, ceux qui sont associés aux algèbres de Lie affine d3(2) et c2(1). Pour chacun de ces systèmes, nous démontrons d'abord son intégralité algébrique. Ceci permet ensuite d' utiliser de la géométrie algébrique pour décrire les surfaces invariantes génériques, leur compactification en tant que variétés abéliennes, la configuration des courbes à l'infini. Comme application, nous démontrons dans le premier cas une caractérisation des surfaces invariantes génériques comme jacobiennes de surfaces de Riemann de genre 2, un morphisme vers le système de Mumford et une nouvelle équation de Lax, qui permet d'écrire la solution explicite en termes de fonctions thêta. Pour le deuxième cas, nous démontrons que les surfaces invariantes génériques sont des variétés abéliennes polarisées de type (1,2), que nous caractérisons comme des variétés de Prym, associées à des surfaces de Riemann de genre 3, munies d'une involution
Mots-clés libres : Systèmes intégrables, variétés abélienne, intégrabilité algébrique.
This thesis deals with the study of two periodic Toda lattices with two degrees of freedom, namely those which are associated to affine Lie algebras. For each of these systems, we first show its algebraic integrability. This allows us to use methods of algebraic geometry to describe its generic invariant surfaces, their compacification as Abelian varieties, the configuration and the singularities of the curves at infinity. As an application, we obtain in the first case a characterisation of the generic invariant surfaces as jacobians of Riemann surfaces of genus two, a morphism to Mumford system and a new Lax equation, which allows us to give the explicit solution in terms of theta functions. For the second case, we show that the invariant surfaces are (1,2) polarized Abelian varieties, that we characterize as Prym varieties associated to Riemann surfaces of genus three, admitting an involution
Keywords : Integrable systems, Abelian variety, algebraic integrability.
Menu :
Annexe :
Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr -
Crédits et mentions légales