Vous êtes ici : Accueil > Secteurs de recherche > Milieux denses et matériaux

Milieux denses et matériaux

Les thèses se rapportant au secteur de recherche "Milieux denses et matériaux"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
4 ressources ont été trouvées. Voici les résultats 1 à 4
Tri :   Date Auteur Titre thèses par page
  • Effets cinétique et chimique lors des premiers stades de croissance de films minces métalliques : compréhension multi-échelle par une approche expérimentale et modélisation numérique    - Furgeaud Clarisse  -  22 novembre 2019

    Voir le résumé
    Voir le résumé
    Cette thèse est consacrée au suivi de la dynamique de croissance de films minces métalliques par pulvérisation magnétron et sa corrélation avec les propriétés des films, telles que les contraintes résiduelles, la microstructure et la morphologie de surface. Différents outils de diagnostic in situ et en temps réel (courbure du substrat-MOSS, spectroscopie de réflectivité optique de surface-SDRS, diffraction (DRX) et réflectivité (XRR) des rayons X et résistivité électrique) couplés à des caractérisations ex situ (HRTEM, STEM, DRX, XRR, EBSD) ont permis d’appréhender l’influence des effets cinétiques et chimiques (réactivité interfaciale, effet d’alliage) sur les premiers stades de croissance (percolation et continuité) et l’évolution structurale et morphologique de films métalliques de haute (Cu, Ag) et faible (W) mobilité. Cette approche est couplée à des simulations atomistiques par Monte Carlo cinétique (kMC) donnant accès aux mécanismes élémentaires de croissance dans le cas du Cu. Ce code, construit et développé pour modéliser la croissance des films minces par pulvérisation magnétron, tient compte des spécificités de cette technique : distribution angulaire et énergétique du flux incident, dépôt d’énergie en (sub-)surface et évolution des contraintes aux joints de grains. Ce couplage expérimental et numérique a mis en évidence une interdépendance complexe de la vitesse de dépôt et du dépôt d’énergie sur la morphologie de croissance et les contraintes intrinsèques des films de Cu et Ag. La génération de contraintes dans ces systèmes résulte de la compétition de différents mécanismes atomiques. Le code kMC montre que la contrainte de compression due à la diffusion des adatomes dans les joints de grains diminue avec la vitesse de dépôt en l’absence de particules énergétiques. De plus, les effets chimiques étudiés comparativement dans les systèmes Cu/Ge et Ag/Ge ont mis en évidence une compétition entre énergie d’interface, réactivité chimique et ségrégation du Ge lors de la croissance. Si les mécanismes de croissance sont différents pour les deux métaux, la présence de Ge (en co-dépôt ou en sous-couche) mène aux mêmes conséquences microstructurales, à savoir une amélioration de la texture (111) et une diminution de la taille des grains et de la rugosité de surface. Enfin, cette méthodologie appliquée à la croissance d’alliages W-Si a montré une dépendance de l’épaisseur critique de la transition amorphe/cristal et de la compétition entre nucléation de la phase et en fonction de la teneur de Si.

  • Influence des contraintes sur la reconstruction de l'Au (111)    - Chauraud Dimitri  -  13 novembre 2019

    Voir le résumé
    Voir le résumé
    L’évolution de la reconstruction de surface de l’Au(111) sous contrainte-déformation a été étudiée dans le cadre d’une approche, à la fois expérimentale par microscopie à effet tunnel sous environnement ultra-vide couplée à un dispositif en compression, et numériquement par simulations en dynamique moléculaire. Dans un premier temps, nous avons étudié l’interaction entre les marches atomiques (vicinales ou traces de glissement) et la reconstruction. Nous avons notamment montré expérimentalement une forte dépendance de la longueur de la reconstruction avec la largeur des terrasses, en très bon accord avec les simulations atomistiques. Nous avons démontré de manière quantitative que ce comportement provenait de la relaxation des contraintes de surface, à la fois le long et perpendiculairement aux marches atomiques. Par la suite, nous avons montré que l’apparition d’une trace de glissement, résultant de l’émergence d’une dislocation à la surface, induit une réorganisation de la reconstruction, caractérisée par la formation d’un motif en forme de U. Nous avons par ailleurs observé expérimentalement la présence de décrochements le long de la trace. Les simulations ont confirmé que ces décrochements étaient corrélés avec la modification de la reconstruction. Dans un second temps, l’étude s’est axée sur l’évolution de la reconstruction en chevrons sous contrainte-déformation appliquée. Les observations expérimentales ont montré qu’une contrainte de compression macroscopique était à l’origine d’une modification de la structure en chevrons. Les simulations en dynamique moléculaire ont permis d’analyser l’influence de l’orientation de la contrainte sur les dislocations perçant la surface. Nous avons montré qu’une réorganisation irréversible de la structure en chevrons a lieu, se caractérisant par l’annihilation des dislocations perçant la surface et la suppression de la structure en chevrons.

  • Étude des propriétés mécaniques de l'or sous forme de nanofil et de structure nanoporeuse par dynamique moléculaire    - Guillotte Maxime  -  12 novembre 2019

    Voir le résumé
    Voir le résumé
    Dans cette thèse nous avons étudié en détail les propriétés mécaniques de l’or sous forme de nanofils et de structures nanoporeuses revêtues ou non de silicium amorphe (a-Si). Ces travaux ont été effectués par dynamique moléculaire. Nous avons dans un premier temps étudié la déformation cyclique de nanofils d’or (NF-Au) et de nanofils cœur-coquille or-silicium amorphe (NF-AuSi). Ces simulations ont montré que le NF-Au est déformé au cours des cycles par deux mécanismes prépondérants : le maclage extensif puis le glissement d’un unique plan atomique. Le cyclage a pour effet d’altérer progressivement la morphologie de la structure en augmentant le nombre et la taille des défauts créés en surface. La déformation cyclique du NF-AuSi montre que le revêtement de a-Si délocalise la plasticité le long de la structure et permet de mieux conserver la morphologie initiale du cœur. Nous avons ensuite développé une méthode originale de génération de l’or nanoporeux. Cette méthode a été validée par la comparaison structurale et mécanique avec des résultats expérimentaux. Puis nous avons étudié la déformation en traction et en compression de différentes structures générées par cette méthode. Nous avons dans les deux cas mis en évidence les mécanismes de déformation des ligaments. En traction, nous avons apporté de nouveaux résultats permettant de mieux comprendre pourquoi l’or nanoporeux est fragile alors que l’or massif est ductile. En particulier, nous avons étudié comment s’opère la fracture en cascade des ligaments par transfert de contrainte entre ceux-ci. En compression nous avons entre autres montré que l’effondrement des pores et la création de joints de grains est responsable de l’augmentation de la contrainte à la transition écoulement-densification. Les simulations de traction et de compression des mêmes structures mais revêtues de silicium amorphe montrent plusieurs résultats intéressants. Par exemple, la résistance des structures est augmentée d’un facteur 2 à 4. De plus, le revêtement a pour effet de délocaliser la plasticité ce qui augmente la ductilité notamment en traction. En compression, la transition écoulement-densification est avancée probablement en raison de la diminution de la taille des pores causée par le revêtement.

  • Évolution microstructurale et compréhension des mécanismes de déformation d'un acier austénitique stabilisé au titane pour les réacteurs de quatrième dimension    - Curtet Émilien  -  07 novembre 2019

    Voir le résumé
    Voir le résumé
    Les futurs réacteurs nucléaires de IVème Génération doivent répondre à de nouvelles exigences en matière de sureté, d’efficacité énergétique, et d’intégration dans le cycle du combustible nucléaire. Pour répondre à cette demande, le CEA développe de nouveaux concepts de réacteurs à neutrons rapides refroidis au sodium. Le matériau de gainage combustible candidat pour le cœur de ces réacteurs est l’acier 15-15Ti AIM1 (Austenitic Improved Material #1). Il s’agit d’un acier inoxydable austénitique avancé contenant 15% de chrome et 15% de nickel en masse, stabilisé au titane et utilisé à l’état faiblement écroui. Cet acier présente une singularité marquée de comportement : sa ductilité diminue fortement entre 20 et 200°C, ce qui se traduit par une diminution d’un facteur proche de 3 des allongements homogène et à rupture dans cet intervalle de température. Par ailleurs, l’effet du vieillissement thermique sur sa microstructure et son comportement mécanique reste peu connu aux températures les plus basses des conditions de service en réacteur, c’est-à-dire entre 400 et 600°C. Dans ce contexte, le but de cette thèse est double : - Améliorer notre compréhension des mécanismes de déformation responsables de la singularité de comportement constatée à 200°C ; - Etudier l’influence d’un vieillissement hors flux dans une gamme de température comprise entre 400 et 600°C sur les évolutions microstructurales et sur le comportement en traction incluant la singularité de comportement. Elucider l’origine de la singularité de comportement en lien avec les mécanismes de déformation a requis une approche multi-échelle regroupant des techniques comme les essais de traction, la diffraction des électrons rétrodiffusés (EBSD) et la Microscopie Electronique en Transmission (MET). Elles ont permis de révéler : - Une coexistence du maclage et du glissement de dislocations parfaites à 20°C ; - Une prédominance du glissement de dislocations parfaites associée à du glissement dévié à 200°C ; - Une hausse continue de l’Energie de Défaut d’Empilement (EDE) entre 20 et 200°C, avec des valeurs respectivement de 27 mJ/m² et de 46 mJ/m². Ainsi, nous avons pu établir que l’évolution des mécanismes de déformation entre 20 et 200°C s’explique par une compétition entre le maclage et le glissement dévié pour minimiser l’énergie totale du matériau. Il apparaît que l’activation du maclage à 20°C conduit à un durcissement important de la microstructure par effet Hall-Pech dynamique, ce qui se traduit par une ductilité élevée. Au contraire, l’activation du glissement dévié associée à la disparition du maclage à 200°C résulte en un durcissement limité de la microstructure responsable d’une localisation précoce de la déformation. Pour des vieillissements entre 400 et 600°C et des temps de maintien allant jusqu’à 1000 h, on ne perçoit pas d’indice notable de restauration. En revanche, des examens au MET permettent de déterminer un nouveau seuil d’apparition des carbures de titane (TiC) nanométriques pour un maintien isotherme de 5000 h à 500°C. En traction, on constate sur tous les états vieillis entre 400 et 600°C un gain à la fois en résistance mécanique (Rm) et en ductilité (Ag et At) par rapport à l’état initial écroui. Il est à noter que le gain très significatif en ductilité constatée sur toute la plage de température testée (entre 20 et 400°C) est couplé à une augmentation du coefficient d’écrouissage. Une hypothèse proposée pour expliquer cette évolution de comportement repose sur le rôle des TiC nanométriques (ou leurs précurseurs) susceptibles d’épingler les dislocations. Notamment, ils empêcheraient les dislocations initialement présentes dans l’acier de s’annihiler ou se recombiner avec les dislocations introduites par l’essai de traction.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales