Vous êtes ici : Accueil > Directeurs de thèse > Thovert Jean-François

Thovert Jean-François

Les thèses encadrées par "Thovert Jean-François"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
4 ressources ont été trouvées. Voici les résultats 1 à 4
Tri :   Date Auteur Titre thèses par page
  • Simulation de la pyrolyse de gaines de câbles électriques exposés au feu : Caractérisation et modélisation de la morphologie et de la conductivité thermique selon l'état de dégradation    - Shi Jianwei  -  09 décembre 2019

    Voir le résumé
    Voir le résumé
    Dans l’étude de la propagation du feu le long des chemins de câbles dans les centrales nucléaires, la nature des câbles et de leur gaine a été identifiée comme un facteur important jouant sur le développement du feu. Dans le but de simuler la pyrolyse et la propagation du feu le long de ces câbles, il est nécessaire de caractériser les propriétés thermiques et thermocinétiques des matériaux dont ils sont constitués tout au long du processus de leur dégradation. Or, la caractérisation directe de certaines propriétés, notamment la conductivité thermique, n’est pas toujours aisée dans la mesure où les résidus de ces matériaux peuvent changer de volume, de morphologie et être friables. C’est pourquoi il est proposé dans ce travail d’estimer la conductivité de ces matériaux et de leurs résidus en prenant en compte leur morphologie caractérisée par micro-tomographie et la conductivité de leurs constituants. Cette approche se divise en quatre étapes : - Construire une représentation 3D des polymères aux étapes les plus significatives de leur pyrolyse compte tenu de la cinétique de leur dégradation, à partir d’images acquises par tomographie X pour la macro-structure et par microscope électronique à balayage (MEB) pour la micro-structure. - Evaluer les conductivités thermiques effectives des polymères dégradés à ces étapes par une méthode d’homogénéisation numérique. - Proposer un modèle conceptuel pour l’évolution de la morphologie au cours de la dégradation du matériau, dont on déduit ensuite un modèle pour la conductivité thermique. - Implémenter ce modèle de conductivité effective dans la modélisation de la pyrolyse afin d’effectuer la simulation complète de la dégradation de ces matériaux, en tenant compte des transferts de chaleur et de masse et des réactions chimiques. Dans le cadre de cette thèse, on s’intéressera plus particulièrement au cas de mélanges EVA-ATH (Ethylvinyl-acétate et aluminium-trihydraté, agent ignifuge minéral). Ces matériaux contiennent une dispersion de grains d'environ 2 µm correspondant à la charge d’ATH, et leurs états dégradés présentent des pores dont la taille n’excède pas quelques centaines de microns. On s’attend donc à ce que les transferts thermiques soient dominés par la conduction et que le rayonnement joue un rôle négligeable. Par ailleurs, il existe un fort écart de conductivité entre les différents constituants, à savoir les gaz occupant le volume des pores, la matrice polymère, l’ATH et l’alumine issue de sa déshydratation. Ces contrastes induisent une forte incertitude sur la conductivité effective du matériau. Dans ce contexte, l’approche proposée permet d’estimer la valeur de la conductivité effective mais aussi les incertitudes liées à différentes caractéristiques du matériau (échelles de porosité, anisotropie, conductivité des différentes substances en présence). Cette estimation porte en premier lieu sur les états de dégradation particuliers observés sous tomographie et imagerie MEB. Mais la formulation d’un modèle conceptuel donne également accès à cette conductivité tout au long de la dégradation du matériau. Ces estimations sont enfin utilisées pour réaliser des simulations de pyrolyse avec le logiciel de simulation des incendies CALIF3S-ISIS de l’IRSN. Ces simulations visent d’une part à reproduire des essais de dégradation d’échantillons d’EVA-ATH sous cône calorimètre issus de la littérature ; d’autre part, des études de sensibilité aux incertitudes sur les différents paramètres du modèle, incluant celles du modèle de conductivité effective, sont menées afin de déterminer, pour ce type de matériau, les paramètres ayant le plus d’influence sur le processus de pyrolyse.

  • Dégradation thermique de matériaux solides poreux exposés au feu - Simulation numérique avec prise en compte des processus chimiques et mécanismes de transfert    - Nguyen Khac Tien  -  18 décembre 2014

    Voir le résumé
    Voir le résumé
    La description de la dégradation des solides est cruciale dans la simulation numérique d'un feu, les gaz de pyrolyse constituant la source combustible amenée au feu. Il importe de décrire avec précision ces processus en fonction des conditions ambiantes. Toutefois, les couplages entre réactions chimiques et mécanismes de transport de masse et de chaleur modifient fortement les comportements. L'objet de ce travail est la prédiction du comportement macroscopique par simulation numérique de la décomposition thermique des matériaux solides. Les propriétés intrinsèques du matériau, parmi lesquelles un modèle chimique incluant un schéma réactionnel et les paramètres thermocinétiques associés, issus d'expérimentation à petite échelle sont considérés ainsi que les mécanismes de transport et les effets limitants qu'ils peuvent introduire. La réponse du matériau est ainsi prédite pour des configurations géométriques et des scénarios d'exposition arbitraires. L’outil spécifique développé au cours de ce doctorat est basé sur une description à l'échelle de Darcy. Il a pour objectif à terme d’être couplé à un code de simulation du feu dans son ensemble, de sorte que les conditions auxquelles chaque élément solide serait exposé seraient décrites tandis que la prédiction de l'évolution du feu dépendrait de la réponse des matériaux fournie par notre module. Un jeu d'applications est présenté pour deux types de bois ayant des schémas réactionnels différents, avec réactions séquentielles ou concurrentielles. Les configurations et scénarios examinés correspondent à des essais normalisés, sous cône calorimètre, et une comparaison entre les résultats numériques et expérimentaux est effectuée.

  • Modélisation à l'échelle microscopique de transports avec réaction en milieu poreux : combustion en lit fixe    - Elayeb Mustafa  -  10 septembre 2008

    Voir le résumé
    Voir le résumé
    La combustion en milieu poreux est traitée par le biais de simulations numériques directes et détaillées, à la microéchelle, dans une extension du travail de Debenest (2003, 2005) qui porte principalement sur un enrichissement du modèle chimique. On considère plus particulièrement la combustion en lit fixe de particules solides, avec comme première application le brûlage de schistes bitumineux. Les processus de transport (convection, diffusion, conduction) et les réactions chimiques sont explicitement décrits à l'échelle des pores, ce qui permet d'exhiber leurs couplages et de révéler les phénomènes locaux qui déterminent les comportements globaux. Les simulations sont conduites principalement dans deux configurations bidimensionnelles, milieu stratifié ou réseau de cylindres, en examinant les effets des réactions pyrolytiques (cracking du kérogène et calcination des carbonates), et avec un schéma d'oxydoréduction qui fait intervenir jusqu'à quatre réactions. Une typologie phénoménologique est établie, incluant notamment l'existence de deux régimes principaux, avec ou sans flamme dans les pores. Des plages de fonctionnement sont identifiées, suivant les paramètres opératoires. On peut en rationaliser les tendances à l'aide de considérations théoriques, et montrer qu'une description macroscopique peut nécessiter des formulations différentes, selon les situations.

  • Modélisation à l'échelle microscopique des transferts thermiques radiatifs en milieu poreux    - Roudani Cherkaoui  -  05 juin 2008

    Voir le résumé
    Voir le résumé
    L'étude de la combustion de combustibles solides (pour la production d'énergie mais aussi pour l'incinération de déchets), pour l'optimisation en termes de rendement et de réduction des émissions d'espèces nocives demande la prise en considération de tous les phénomènes énergétiques à l'échelle microscopique. Dans cette optique nous présentons un travail qui porte sur la caractérisation de l'incidence des échanges radiatifs sur les propriétés de transfert thermique des milieux poreux. Un outil de simulation 3d à l'échelle de microscopique, basé sur une méthode de Monte Carlo, a été mis en place. Il a ensuite été appliqué à la simulation du transfert par conduction et rayonnement à partir d'un grain source de chaleur au coeur de milieux poreux, en explorant une plage étendue de microstructures et de paramètres opératoires. Les résultats montrent que les transferts radiatifs peuvent avoir une influence considérable dans le processus de smoldering. La prise en compte du rayonnement dans une description macroscopique peut se faire par le biais d'une conductivité radiative équivalente, pour laquelle une modélisation en fonction de la température locale et de propriétés géométriques du milieu poreux est proposée.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales