Vous êtes ici : Accueil > Directeurs de thèse > Servat Karine

Servat Karine

Les thèses encadrées par "Servat Karine"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
6 ressources ont été trouvées. Voici les résultats 1 à 6
Tri :   Date Auteur Titre thèses par page
  • Nanoélectrocatalyseurs d'or à morphologie contrôlée pour l'oxydation de molécules sondes : monoxyde de carbone et glucose    - Mayet Nolwenn  -  09 décembre 2019

    Voir le résumé
    Voir le résumé
    Les propriétés interfaciales des nanoparticules métalliques dépendent de leur taille, leur forme, leur composition et du milieu réactionnel. Ces propriétés inhabituelles offrent de nombreuses applications notamment en électrocatalyse. L'utilisation de nanoparticules non supportées est nécessaire pour comprendre la réactivité de surface intrinsèque des nanocatalyseurs en présence de différentes molécules comme le glucose, le glycérol, le monoxyde de carbone ou l'oxygène. Des nanoparticules à base d’or non supportées et de formes contrôlées (bâtonnets, octaèdres, etc.) ont été préparées par la méthode de croissance des germes. Des caractérisations physicochimiques (UV‒visible, microscopie électronique, etc.) ont permis d’observer des nanoparticules de forme et de taille souhaitées. Les caractérisations électrochimiques telles que le dépôt sous potentiel de plomb par voltammétrie cyclique ont révélé l’orientation cristallographique et la présence des faces à hauts indices de Miller (par désorption réductrice d’acide 4‒mercaptobenzoïque). L'oxydation de surface de ces nanoparticules en milieu électrolytique support dépend des différentes orientations cristallographiques. L'oxydation du CO sur des nanosphères d'or de 24 nm de diamètre a été observée dès 0.2 V vs. ERH. Les nanomatériaux d’or préparés en présence d’argent et de palladium montrent la meilleure activité en matière de potentiel de début d’oxydation du glucose (0.2 V vs. ERH soit 100 mV de moins que l'or tout seul). En milieu basique, la réduction du dioxygène et l’oxydation du glycérol sur les nanomatériaux cœur-coquilles (Au@Pd et Au@AgPd) montrent respectivement une densité de courant d'échange de 0.65×10−3 mA.cm−2 et un potentiel de début d'oxydation de 0.55 V vs. ERH. Le cœur à base d'or ainsi que la coquille d'argent ont ainsi un effet bénéfique sur ces deux réactions avec la diminution des surtensions respectives.

  • Synthèse de nanocatalyseurs métalliques supportés pour l'électrooxydation du glucose : application en pile implantable    - Lemoine Charly  -  06 décembre 2019

    Voir le résumé
    Voir le résumé
    L’alimentation durable des dispositifs électroniques implantés est un défi majeur dans les domaines de la médecine et du bio-monitoring. La pile Glucose/Oxygène est une source d’énergie adaptée à ces applications car le glucose est un combustible renouvelable et présent dans les systèmes biologiques. Dans cette étude, des catalyseurs constitués de nanoparticules d’or et de platine dispersés sur des substrats de carbone tels que le Vulcan, l’oxyde de graphène (GO) et l’oxyde de graphène réduit (rGO) ont été préparés par deux voies de synthèse (Bromide Anion Exchange - BAE et polyol). Ces catalyseurs mono- (Pt, Au) et bi-métalliques (AuxPty) ont été utilisés en tant qu’anode de pile implantée dans un animal pour alimenter un dispositif de suivi médical. Les caractérisations physico-chimiques (Raman, MET, DRX, XPS) des matériaux ont permis la détermination de leur structure, leur composition de surface et les interactions métal-support. Ensuite, les techniques électrochimiques (voltammétrie, CO-stripping et chronoampérométrie) ont permis de révéler leur activité et stabilité lors de l’oxydation du glucose et la réduction de l’oxygène en milieux alcalin et phosphate. Lors des tests en pile glucose/O2 avec membrane échangeuse d’ions, Pt/rGO s’est imposé comme le catalyseur le plus performant, et les matériaux bimétalliques à haute teneur en platine comme les plus stables. En tampon PBS, les performances de la pile caractérisées par la tension de pile à circuit ouvert (OCV) et la densité de puissance (Pj) atteignèrent respectivement 0,7 V et 28 microW.cm-2. En l’absence de membrane, le mélange des réactifs, conditions proches de l’implantation, montrait un effet inhibiteur sur l’OCV (0,4 V) et la densité de puissance (8 µW.cm-2). Des analyses par chromatographie et spectrométrie de masse ont permis d’identifier le gluconate et le glucuronate comme seuls produits d’oxydation du glucose, qui sont non-toxiques et à haute valeur ajoutée.

  • Transformation électrocatalytique de sucres couplée à la réduction enzymatique de l'oxygène moléculaire pour la production d'énergie    - Holade Yaovi  -  26 juin 2015

    Voir le résumé
    Voir le résumé
    Le développement de générateurs d'énergie pour alimenter des micro-appareils électroniques implantés est devenu une option inéluctable. L'objectif général qui a orienté ces recherches était l'élaboration et les études approfondies des propriétés nanomatériaux métalliques utilisables comme électrocatalyseurs afin de convertir l'énergie chimique en énergie électrique. Les nanomatériaux sont obtenus par la méthode de synthèse : Bromide Anion Exchange (BAE) qui a été scrupuleusement revisitée puis optimisée avec un agent réducteur faible (AA) et fort (NaBH4). Cette voie de synthèse a permis d'obtenir (rendement ≥ 90 %) des matériaux plurimétalliques composés d'or, de platine et de palladium. Un prétraitement des supports commerciaux des nanoparticules a permis d’augmenter leurs surfaces, spécifique et active respectivement de 48 et 120 %. Les études (électro)analytiques ont permis d'identifier les intermédiaires et produits de réaction du combustible. Le glucose s'oxyde sans rupture de la liaison C-C pour donner majoritairement du gluconate avec une sélectivité ≥ 88 %. Les tests réalisés en biopile hybride (cathode enzymatique) indiquent que les catalyseurs Au/C-AA et Au60Pt40/C-NaBH4 sont les meilleures anodes abiotiques (Pmax = 125 µW·cm-2 à 0,4 V). Par ailleurs, les piles sans membrane séparatrice et sans enzyme ont été réalisées avec succès pour activer un stimulateur cardiaque et un système de transmission d'information en mode "Wifi". Ces dispositifs, rapportés pour la première fois, ouvrent une ère nouvelle pour la conception de convertisseurs d'énergie pour alimenter les implants médicaux ou des appareils sans fil de détection et de surveillance.

  • Étude des interfaces des nanocatalyseurs / glucose et enzymes / O2 pour une application biopile    - Tonda-Mikiela Pradel  -  11 décembre 2012

    Voir le résumé
    Voir le résumé
    Les travaux présentés dans cette thèse visent à étudier les interfaces "nanocatalyseur/glucose" et "enzyme/O2" d'une biopile hybride. Dans ce cadre, une nouvelle méthode de synthèse de nanoparticules à base d'or et de platine a été développée. Ces nanomatériaux ont été caractérisés par différentes méthodes physicochimiques pour connaître leur taille, leur morphologie et leur dispersion dans un substrat carboné (Vulcan XC72R). La surface active de chaque électrode a été déterminée par voltammétrie cyclique et par CO stripping. Il a été montré que dans les catalyseurs AuxPty, l'or a un effet promoteur sur le platine vis-à-vis de l'oxydation du glucose. Le catalyseur Au70Pt30 présente la meilleure activité catalytique. L'étude par spectroélectrochimie a permis de déterminer que la B–gluconolactone est le produit primaire de l'oxydation du glucose qui procède à bas potentiel par la déshydrogénation du carbone anomérique sur le platine. La réaction de réduction de O2 a été catalysée par une enzyme, la bilirubine oxydase (BOD). Pour faciliter le transfert électronique, deux médiateurs : ABTS et un complexe d'osmium ont été encapsulés avec l'enzyme dans une matrice de Nafion® pour créer les interfaces : BOD/ABTS/O2 et BOD/Os/O2. L'étude voltammétrique des deux médiateurs en milieu tampon phosphate a révélé deux systèmes quasi-réversibles avec des potentiels apparents proches du potentiel redox du site T1 de la BOD. Bien que difficilement comparables en termes de densité de courant au catalyseur constitué de nanoparticules de platine, les cathodes enzymatiques permettent de catalyser à quatre électrons la réduction de O2 à des potentiels très proches du potentiel de Nernst.

  • Synthèse et caractérisation de matériaux électrocatalytiques pour l'activation de la molécule d'eau : application dans une anode d'électrolyseur de type PEM    - Mamaca Nurcan  -  04 novembre 2011

    Voir le résumé
    Voir le résumé
    Le stockage et la conversion d'énergie sont un défi scientifique majeur qui nécessite le développement de systèmes propres comme les piles à combustible. La production d'un combustible comme l'hydrogène par l'électrolyse de l'eau nécessite le développement de matériaux d'anode performants et efficaces pour diminuer les fortes surtensions observées et surtout les coûts liés à cette technologie. Ainsi des nanomatériaux d'anode à base d'oxydes de ruthénium, d'iridium et/ou d'un troisième métal non noble ont été synthétisés par deux méthodes qui sont, la méthode Pechini-Adams et la méthode polyol. Les caractérisations physico-chimiques prouvent l'existence d'oxydes métalliques et de grande surface spécifique, puis confirment la morphologie nanométrique et hétérogène des matériaux. Parmi les différentes compositions de nanomatériaux bimétalliques RuxIr1-xO2 synthétisées et étudiées, celle contenant x = 0,9 présente une bonne activité électrocatalytique pour l'activation de la réaction d'oxydation de l'eau. L'ajout d'un troisième métal comme le tantale, le titane, le niobium et l'étain a été bénéfique et montre que l'activité électrocatalytique peut être améliorée en diminuant la teneur en Ru et/ou en Ir. Ces nanomatériaux ont été optimisés et utilisés dans des électrolyseurs type PEM de 5 cm2 et de 25 cm2 de surface pour des tests de longue durée de plus de 1200 heures.

  • Préparation et caractérisation de nanoparticules à base d'or et de platine pour l'anode d'une biopile glucose-dioxygène    - Habrioux Aurélien  -  12 octobre 2009

    Voir le résumé
    Voir le résumé
    Les biopiles représentent une solution attractive et ambitieuse dans le développement des systèmes alternatifs de conversion d'énergie. Nous proposons de substituer la bioanode d'une pile glucose/O2 par un catalyseur abiotique constitué de nanomatériaux synthétisés à partir de la méthode " w/o microemulsion ". Une caractérisation physico-chimique de ces matériaux bimétalliques a permis de déterminer leur taille et de mettre en évidence leurs propriétés électroniques, les défauts cristallins en leur sein, les déformations dont ils font l'objet, leur composition de surface et leur caractère allié. Lors de l'étude de l'électrooxydation du glucose sur les nanostructures Au-Pt, le matériau bimétallique (Au70Pt30) a montré les meilleures performances catalytiques et ce, en raison d'un effet de synergie entre l'or et le platine, d'une modification des niveaux d'énergie de la bande de valence du platine et par la présence de défauts cristallins modifiant la surface catalytique. Le développement de bioélectrodes à base de GOD ou BOD a également été réalisé, soit par immobilisation dans une matrice de polymère, soit par greffage covalent. Les électrodes préparées ont permis de réaliser des tests en pile dans un système innovant, concentrique et sans membrane séparatrice. Une puissance de 42 μW.cm-2 a été obtenue dans une biopile totalement enzymatique en présence de 10 mM de glucose. La substitution de la bioanode par un nanocatalyseur abiotique Au70Pt30 permet à la biopile de délivrer une densité de puisssance de 90 μW.cm-2. Une augmentation de la concentration du combustible glucose (0,7 M) accroît ses performances électriques à 190 μW.cm-2 pour une tension de cellule de 0,5 V.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales