Vous êtes ici : Accueil > Directeurs de thèse > Pouilloux Yannick

Pouilloux Yannick

Les thèses encadrées par "Pouilloux Yannick"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
5 ressources ont été trouvées. Voici les résultats 1 à 5
Tri :   Date Auteur Titre thèses par page
  • Origine et impact de la synergie Cu-ZnO sur l'hydrogénation catalytique du CO2 en méthanol    - Tisseraud Céline  -  23 novembre 2016

    Voir le résumé
    Voir le résumé
    L’hydrogénation catalytique du CO2 est considérée comme l’une des voies de valorisation les plus prometteuses pour la production du méthanol. Cette synthèse, souvent accompagné par une formation de CO, a fait l’objet de nombreuses études dans la littérature. Cependant, les résultats obtenus sur des catalyseurs à base de Cu et de ZnO ont démontré que cette réaction n’est pas aussi simple qu’elle y paraissait. Il y a encore beaucoup de controverses et d’interrogations sur la nature des sites actifs et sur les différentes étapes réactionnelles mises en jeu lors de la réaction. L’objectif de ce travail est d’apporter des éléments de compréhension sur la nature des sites actifs et leur rôle sur l’activation du CO2 et de H2. L’étude sur des catalyseurs modèles (mélanges mécaniques et matériaux préparés par coprécipitation) a permis de mettre en évidence un effet de synergie entre Cu et ZnO lié à des phénomènes de migration. Ce travail a montré que la production de méthanol est étroitement liée à la création d’une phase oxyde de type CuxZn(1-x)Oy (lacunaire en oxygène) induit par un effet de Kirkendall à l’interface Cu-ZnO, favorisant l’épandage de l’hydrogène. Différents modèles mathématiques ont été développés afin de déterminer la concentration des contacts entre Cu et ZnO. Les résultats obtenus ont démontré qu’il est possible de corréler directement l’activité du catalyseur avec la concentration de contacts et que cela peut permettre ainsi de prédire la composition chimique idéale du catalyseur pour un design de matériau donné. L’expertise complète de la relation design-activité a permis le développement de matériaux Cu-ZnO de type cœur-coquille 100% sélectif en méthanol.

  • Divalent heavy metals adsorption on various porous materials: removal efficiency and application    - Ezzeddine Zeinab  -  09 décembre 2014

    Voir le résumé
    Voir le résumé
    L'accès à l'eau potable est indispensable au développement de la vie. La pollution, liée aux activités anthropiques, constitue une menace pour la santé humaine et pour les espèces sauvages. Parmi les nombreux polluants retrouvés dans les eaux, la pollution par les métaux lourds constitue un problème environnemental d'intérêt mondial en raison de leur toxicité élevée, même à des concentrations très faibles, et de leur persistance dans la nature. De nombreuses méthodes peuvent être mises en oeuvre pour l'élimination des métaux lourds dans l'eau. Parmi elles, les procédés d'adsorption sont très attractifs car très efficaces et peu couteux. Les zéolithes sont des matériaux bien connus pour leurs propriétés d'échange. Les matériaux mésoporeux modifiés ou adsorbants carbonés sont également très attractifs du fait de leur importante surface spécifique. Dans ce manuscrit, les performances d'adsorption de cations métalliques en phase aqueuse sur des matériaux mésoporeux, silices SBA-15, SBA-16, KIT-6 modifiées par l'EDTA et carbone CMK-3 obtenu par réplication ont été étudiées et comparées avec celles de la zéolithe NaX. Les propriétés physico-chimiques de l'ensemble des matériaux ont été caractérisées par plusieurs techniques d'analyses. L'influence des paramètres expérimentaux (pH, temps de contact, température, concentration des ions métalliques et de la présence d'ions concurrents) sur l'adsorption a été étudiée en mode batch. L'efficacité de ces matériaux a également été étudiée dans un réacteur dynamique à lit fixe. Les résultats obtenus ont montré que tous les matériaux étudiés éliminent efficacement et rapidement les métaux divalents dans les eaux même à faible concentration. Néanmoins, le carbone CMK-3 s'avère être le meilleur adsorbant du fait de sa grande capacité d'adsorption même en présence d'espèces compétitrices.

  • Transformation des alcools sur zéolithes protoniques : "rôle paradoxal du coke"    - Hamieh Soumaya  -  05 décembre 2013

    Voir le résumé
    Voir le résumé
    L'éthanol est converti, à 350°C sous 30 bar et sur des zéolithes protoniques, en un mélange de paraffines légères et d'aromatiques ; produits incorporables dans le pool essence. Cependant, la transformation de EtOH sur zéolithes acides conduit à la formation du coke. Des techniques physiques avancées, en particulier les techniques MALDI et LDI-TOF MS, couplées à la méthode d'analyse qui consiste à récupérer dans un solvant les molécules carbonées après dissolution de la zéolithe dans HF, contribuent à caractériser finement le coke. Sa composition dépend du catalyseur : sur HBEA(11), zéolithe à larges pores, 17 familles ont été détectées contre 4 sur HZSM-5(40) de taille de pore intermédiaire. Sur cette dernière, le coke, composé de polyalkybenzènes / naphtalènes / phénalènes et pyrènes, est localisé à l'intersection des canaux et a une toxicité vis-à-vis des sites acides de Brønsted de 1. En dépit d'un empoisonnement total, cette zéolithe est toujours capable de convertir EtOH, comme MeOH, en hydrocarbures et qui plus est avec les mêmes sélectivités en produits. La transformation de ces deux alcools ne s'explique pas par un mécanisme classique de catalyse acide, mais par un mécanisme concerté radicalaire-acide. La présence d'un inhibiteur de radicaux dans la charge réactionnelle, l'hydroquinone, provoque une désactivation immédiate et une diminution de la concentration des radicaux. La transformation de EtOH et MeOH passe par un intermédiaire réactionnel commun, le carbène :CH2, dont l'oligomérisation radicalaire conduit à la formation d'oléfines. Ces oléfines légères (n-O3-n-O5) sont très réactives et se transforment par catalyse acide (oligomérisation / cyclisation / t

  • Synthèse et fonctionnalisation d'aldéhydes issus de la coupure d'esters gras insaturés    - Louis Kévin  -  15 novembre 2013

    Voir le résumé
    Voir le résumé
    La valorisation du carbone renouvelable joue un rôle croissant dans l'industrie chimique. Ces travaux rapportent l'utilisation d'huiles végétales comme matières premières en substitution de celles d'origine fossiles pour la synthèse de monomères bio-sourcés destinés à la production de polyesters ou de polyamides. La production du 9 oxononanoate de méthyle, comme molécule plateforme, à partir d'esters méthyliques d'huile de colza a été réalisée par coupure oxydante (ozonolyse) sans solvant à température ambiante, suivie d'une réduction des intermédiaires par hydrogénation catalytique sous pression de H2 et de Pd(5)/C. Ainsi, le rendement en aldéhyde-ester est de 92%. Ce procédé a été appliqué à la synthèse de molécules plateformes avec des longueurs de chaînes de 9 à 13 atomes de carbone. Une matière première renouvelable, des conditions de réaction douces, le recyclage du catalyseur et des co-produits non toxiques et valorisables ont permis de développer un procédé durable plus respectueux de l'environnement. La réduction de la fonction aldéhyde a été menée par hydrogénation catalytique, à 50°C dans le méthanol, pour former l'alcool-ester correspondant. Le nickel de Raney ainsi que le Pd(5)/C offrent des rendements en 9-hydroxynonanoate de méthyle supérieurs à 90 %, mais le premier catalyseur conduit à un temps de réaction plus court. L'amination réductrice de la fonction aldéhyde a été menée avec succès à partir de NH3 gazeux et de Pd(5)/C, à 50°C dans le méthanol, pour conduire majoritairement à la synthèse de l'amino-ester primaire. La quantité de NH3(g) influence la sélectivité et au moins trois équivalents sont nécessaires pour limiter la formation d'amino-ester.

  • Optimization of the balance between activity and selectivity on a hydroisomerization catalyst    - Batalha Nuno Miguel Rocha  -  08 octobre 2012

    Voir le résumé
    Voir le résumé
    Un des principaux défis lors de l'élaboration des catalyseurs adéquats pour le procédé de déparaffinage catalytique (hydroisomérisation) est de maximiser le rendement en isomères et l'activité du catalyseur, tout en maintenant une faible sélectivité en produits de craquage. En effet, des catalyseurs avec sélectivité de forme à base de zéolithes à taille de pore intermédiaire, par exemple Pt/ZSM-22, sont sélectives en isomères, tandis que les zéolithes à large pore sont plus actifs, mais moins sélectif. L'objectif principal de cette thèse était, alors, d’étudier et de développer un catalyseur à la fois actif et sélectif en isomères. Deux études parallèles ont été realisées: la première basée sur l'impact de la proximité entre les sites actifs sur la réaction (Part I), et la seconde, portant sur le développement d'un catalyseur d'hydroisomérisation de haute performance en utilisant des nanocristaux de zéolithe BEA comme support acide (Part II). La participation de l’épandage d’hydrogène (Hsp) sur le mécanisme de la réaction d'hydroisomérisation a été démontrée. En effet, lorsque les sites actifs sont proches, les espèces Hsp diffusent au voisinage des sites acides provocant l'hydrogénation directe des ions carbénium. Un mécanisme de réaction a, alors, été proposé utilisant ce phénomène comme une alternative au mécanisme classique proposé par Weisz, où la réaction d'hydrogénation a lieu uniquement sur les sites métalliques. Ce phénomène justifie l'activité et la sélectivité plus élevées observées sur les catalyseurs, où les sites actifs sont proches. Sur la deuxième partie de ce manuscrit, des nanocristaux de zéolithe BEA ont été utilisés pour développer un catalyseur d’hy

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales