Vous êtes ici : Accueil > Directeurs de thèse > Pierre Morgan

Pierre Morgan

Les thèses encadrées par "Pierre Morgan"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
1 ressource a été trouvée.
  • Étude numérique des équations de Cahn-Hilliard non isotrope et non isotherme    - Injrou Sami  -  19 juin 2009

    Voir le résumé
    Voir le résumé
    Dans cette thèse, nous étudions d'un point de vue numérique des équations de Cahn-Hilliard non isotrope et non isotherme modélisées d'après une approche de Gurtin. Concernant l'équation de Cahn-Hilliard-Gurtin non isotrope, dont la structure est proche d'un flot de gradient, nous proposons une discrétisation en espace par éléments finis mixtes, et en même temps par le schéma d'Euler implicite. Nous établissons la stabilité du schéma semi-discrétisé en espace et du schéma complètement discrétisé pour une non linéarité polynômiale. Nous établissons également, pour ces mêmes schémas, des estimations d'erreurs optimales en norme H1 et en norme L2. Ces résultats sont illustrés par des simulations numériques en dimension un et deux d'espace, qui permettent d'étudier l'influence des différents paramètres. Concernant le modèle de Cahn-Hilliard-Gurtin non isotherme, pour lequel il n'existe pas de résultat d'existence locale, nous proposons un schéma totalement discrétisé qui se révèle stable en pratique. Des simulations numériques en dimension un d'espace permettent d'observer des comportements asymptotiques proches du cas isotherme.

|< << 1 >> >|

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales