Vous êtes ici : Accueil > Directeurs de thèse > Monnet Tony

Monnet Tony

Les thèses encadrées par "Monnet Tony"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
2 ressources ont été trouvées. Voici les résultats 1 à 2
Tri :   Date Auteur Titre thèses par page
  • Identification des paramètres inertiels segmentaires humains    - Couvertier Marien  -  18 décembre 2018

    Voir le résumé
    Voir le résumé
    L'objectif de ce travail est d'identifier les paramètres inertiels segmentaires humains, c’est-à-dire la masse, la position du centre de masse et la matrice d’inertie de ces segments. Ces paramètres, au nombre de dix par segment, constituent une donnée d'entrée indispensable aux calculs de dynamique inverse utilisés dans les études de biomécanique. Bien qu'il existe des méthodes pour avoir accès à ces paramètres par le biais de tables anthropométriques ou le calcul des volumes segmentaires, l'identification apparaît nécessaire dès lors que les sujets étudiés sont atypiques (handicapés physiques, femmes enceintes, sportifs présentant des hypertrophies musculaires). L'originalité de ce travail est de proposer une approche mixte dans l'écriture du problème d'identification combinant une formulation vectorielle et matricielle des équations du mouvement d’un système poly-articulé supposé rigide, qui ont déjà été établies au sein de l'équipe dans les travaux de thèse de Tony Monnet. La première permet d’identifier les masses et les centres de masse segmentaires. La deuxième permet d’identifier, elle, les matrices d’inertie segmentaires. Les paramètres d’entrée de cette méthode d’identification sont les matrices rotations segmentaires, leurs dérivées secondes, les accélérations segmentaires, ainsi que le torseur externe. Si ce dernier est directement mesuré par une plateforme de force, les autres grandeurs sont obtenues après des opérations sur la mesure de la cinématique segmentaire du sujet obtenue par un système opto-électronique. Ce système mesurant la cinématique du sujet grâce à des marqueurs cutanés, cette cinématique diffère de la cinématique théorique obtenue si les segments sont rigides, du fait des mouvements des masses molles. Ce travail a donc porté sur le calcul d’une matrice rotation optimale, basée sur une transformation matérielle décrivant le mouvement segmentaire. De plus les mouvements des masses molles ainsi que les instruments de mesure induisent un bruit dans les signaux cinématiques. Du fait de la double dérivation de ces signaux pour le calcul des accélérations segmentaires et des dérivées secondes des matrices rotations, ce bruit devient prépondérant sur le signal porteur. Ce travail a donc également porté sur le filtrage à effectuer pour atténuer ces bruits. Cinq filtres utilisés dans la littérature (filtre de Butterworth, lissage de Savitsky-Golay, moyenne glissante, lissage par spline et analyse spectrale) ont été implémentés et leurs effets sur les paramètres inertiels identifiés ont été comparés. Les résultats montrent que les paramètres identifiés avec la méthode vectorielle ne nécessitent pas de traitement. L’identification des matrices d’inertie nécessite, elle, un traitement et le lissage optimal est obtenu avec le moyenne glissante. Enfin, une modélisation du membre supérieur par une chaîne cinématique a également été implémentée afin de rigidifier la cinématique acquise. Les premiers résultats ne sont pas satisfaisants mais le modèle retenu peut être affiné avant de conclure sur l’intérêt de cette modélisation pour l’identification des paramètres inertiels. Finalement, l’approche mixte développée permet l'identification des dix paramètres inertiels des segments du corps humain. La méthode a été validée en identifiant les paramètres inertiels des segments constituant le membre supérieur de dix huit sujets. Les paramètres obtenus ont ensuite été comparés à ceux issus d’une table anthropométrique. Les résultats montrent que les paramètres identifiés sont très proches de ceux estimés. Cela montre donc que l’identification des paramètres inertiels est fiable et permet d’avoir accès aux paramètres inertiels de sujets atypiques, pour qui les tables anthropométriques ne sont pas disponibles.

  • Mesure inertielle pour l'analyse du mouvement humain. Optimisation des méthodologies de traitement et de fusion des données capteur, intégration anatomique    - Nez Alexis  -  06 juillet 2017

    Voir le résumé
    Voir le résumé
    Face aux limites auxquelles doivent faire face les systèmes optoélectroniques (matériel lourd, champ de mesure limité), les capteurs inertiels constituent une alternative prometteuse pour la mesure du mouvement humain. Grâce aux dernières avancées techniques, notamment en termes de miniaturisation des capteurs, leur utilisation en ambulatoire c’est-à-dire de façon autonome et embarquée est devenue possible. Mais ces opérations de miniaturisation ne sont pas sans effet sur les performances de ces capteurs. En effet, une telle mesure est dégradée par différents types de perturbations (stochastiques et déterministes) qui sont alors propagées au cours du processus dit de fusion des données visant à estimer l'orientation des segments humains. Classiquement, cette opération est réalisée à l'aide d'un filtre de Kalman dont le rôle est justement d'estimer une grandeur à partir d'une mesure bruitée en la confrontant à un modèle d'évolution. Dans ce contexte, nous proposons diverses méthodologies dans le but d'accéder à une mesure suffisamment précise pour être exploitée dans le cadre de l'analyse du mouvement humain. La première partie de cette thèse se focalise sur les capteurs. Tout d'abord, nous étudions les bruits de mesure issus des capteurs inertiels, puis nous leur attribuons un modèle afin de les prendre en compte au sein du filtre de Kalman. Ensuite, nous analysons les procédures de calibrage et évaluons leurs effets réels sur la mesure afin d'émettre quelques propositions en termes de compromis performance/facilité de réalisation. Dans une seconde partie, nous nous consacrons à l'algorithme de fusion des données. Après avoir proposé un filtre de Kalman adapté à la mesure du mouvement humain, nous nous focalisons sur un problème récurrent à ce stade : l'identification des matrices de covariance dont le rôle est d'attribuer une caractérisation globale aux erreurs de mesure. Cette méthode, basée sur une confrontation de la mesure avec une référence issue d'un système optoélectronique, met en évidence la nécessité de traiter ce problème rigoureusement. Dans une troisième partie, nous commençons à aborder les problèmes liés à l'utilisation des capteurs inertiels pour la mesure du mouvement humain, notamment le calibrage anatomique et le positionnement des capteurs. En conclusion, les gains apportés par les diverses propositions avancées dans cette thèse sont évalués et discutés.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales