Vous êtes ici : Accueil > Directeurs de thèse > Kokoh Kouakou Boniface

Kokoh Kouakou Boniface

Les thèses encadrées par "Kokoh Kouakou Boniface"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
12 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Sustainable Hydrogen Production on PGM-free Electrocatalytic Materials in Anion Exchange Membrane Water Electrolyzer (AEMWE)    - Mendonca Inocencio Carlos Victor  -  08 décembre 2022

    Voir le résumé
    Voir le résumé
    La production électrochimique d'hydrogène vert sur des matériaux d’électrode abondants sur terre par électrolyse de l'eau jouera un rôle important dans la transition énergétique, en plus de stimuler le développement de procédés plus durables dans le secteur de l'industrie chimique. Dans ce contexte, ce travail propose la synthèse et le design d'une cathode alternative au platine comme catalyseur de la réaction de dégagement d'hydrogène (HER) dans un électrolyseur d'eau à membrane échangeuse d'anions (AEMWE). A cette fin, des sulfures de métaux de transition (TMS) monométalliques et bimétalliques, à base de Ni, Co et Mo, ont été préparés par voie hydrothermale et caractérisés physicochimiquement. Des études électrochimiques ont mis en évidence un effet synergique résultant de l'association de la phase 2H-MoS2 avec un second composé métallique. Cette synergie a été attribuée à la capacité du cobalt ou du nickel à dissocier l'eau, contrairement au MoS2, qui est une étape prépondérante en milieu alcalin. Ainsi, le sulfure de nickel-molybdène (Ni0,5Mo0,5Sₓ) et le sulfure de cobalt-molybdène (Co0,5Mo0,5Sₓ) ont montré que leur cinétique HER est limitée par leur conductivité, ce qui peut être pallié par l'ajout d’un substrat conducteur électronique (Carbon Vulcan XC72R) dans la formulation de l'encre catalytique. Cela a conduit à une densité de courant de 200 mA cm-2 sur Co0,5Mo0,5Sₓ et Ni0,5Mo0,5Sₓ avec des surtensions respectives de seulement 66 et 60 mV supérieures à celles obtenues sur Pt/C à un taux de charge de 40 wt.%. Une étude exploratoire de formulations d'encres catalytiques contenant le catalyseur Ni0.5Mo0.5Sx a aussi été effectuée pour comparer l’efficacité du liant entre les ionomères Nafion® et Sustainion®. Pour maintenir une activité comparable au ionomère Nafion, la teneur en ionomère Sustainion a dû être réduite, et le taux de solvant organique, augmenté dans le ratio isopropanol/eau. Enfin, un électrolyseur a été construit avec assemblage membrane électrodes (AME) qui est composé de Co0.5Mo0.5Sₓ (cathode), Ir black (anode), le tout déposé sur la membrane échangeuse anionique Sustainion® X37-50. Il a été mis en fonctionnement à 50 ºC et en circulant une solution alcaline (KOH 0,1 mol L-1) dans le compartiment anodique. Une densité de courant de 1,2 A cm-2 a été mesurée lorsque la tension de cellule atteint 2 V. L’électrolyseur a ensuite été soumis à des tests de stabilité de plus 40 h et a montré une certaine décroissance du courant due probablement à la formation de bulles. En outre, une décroissance irréversible du courant est attribuée à la ségrégation des particules de Co et Mo. Cela se traduit par une diminution de leur interaction et une baisse d'activité bifonctionnelle du catalyseur bimétallique.

  • Réduction électrochimique du CO2 catalysé par un complexe moléculaire de Cobalt et un électrocatalyseur bimétallique Ni-Sn    - Rayess Paul  -  07 juin 2021

    Voir le résumé
    Voir le résumé
    La conversion du dioxyde de carbone en produits chimiques à valeur ajoutée a récemment reçu beaucoup d'attention de la communauté scientifique, car elle peut contribuer à atténuer les effets du réchauffement climatique, à fournir des alternatives à l'épuisement des combustibles fossiles et ouvrir de nouvelles voies de stockage d'énergie. La réaction de réduction électrochimique du dioxyde de carbone (CO2RR) est une méthode prometteuse pour obtenir divers produits carbonés tels que le monoxyde de carbone (CO) et l’acide formique (HCOOH) utilisés dans l'industrie. Cette réaction nécessite l'utilisation d'un matériau d'électrode approprié. Dans les travaux de cette thèse, une première étude a porté sur la synthèse d’un catalyseur à base de métaux non nobles, le nickel et l’étain, supporté sur du carbone Vulcan XC-72R pour la CO2RR dans un électrolyte NaHCO3. Ce matériau a été caractérisé physico-chimiquement par ATD-ATG, ICP, MET, EDX et DRX pour déterminer sa composition, sa morphologie ainsi que sa structure. Ensuite, des électrodes à diffusion de gaz ont été préparées par aérographie à l’aide du catalyseur Ni-Sn, puis testées dans un électrolyseur sous flux conçu et développé pendant cette thèse. Les produits de la CO2RR obtenus, CO et HCOOH, ont été identifiés et quantifiés par des méthodes chromatographiques µGC et HPLC, spectroscopique RMN et spectrométrique MS. Une deuxième étude a consisté en l’utilisation du complexe moléculaire de cobalt [Co(qpy)]2+ supporté sur différents matériaux carbonés (carbone Vulcan XC-72R, oxyde de graphène GO, oxyde de graphène réduit rGO, rGO dopé N et rGO dopé N, S) comme catalyseur pour la CO2RR. Nous montrons que le support carboné induit un changement significatif du courant catalytique. La nature de l'interaction entre le support et le complexe ainsi que le potentiel de début de la réduction du CO2 ont été étudiés par voltammétrie cyclique. Des mesures de voltammétrie linéaire couplée à la spectroscopie FTIR in situ ont été réalisées pour identifier les produits formés et déterminer la géométrie du complexe sur le support. Des électrolyses ont été effectuées sur chaque matériau pour déterminer la densité de courant maximale et la sélectivité pour la formation de monoxyde de carbone.

  • Synthèse de nanocatalyseurs métalliques supportés pour l'électrooxydation du glucose : application en pile implantable    - Lemoine Charly  -  06 décembre 2019

    Voir le résumé
    Voir le résumé
    L’alimentation durable des dispositifs électroniques implantés est un défi majeur dans les domaines de la médecine et du bio-monitoring. La pile Glucose/Oxygène est une source d’énergie adaptée à ces applications car le glucose est un combustible renouvelable et présent dans les systèmes biologiques. Dans cette étude, des catalyseurs constitués de nanoparticules d’or et de platine dispersés sur des substrats de carbone tels que le Vulcan, l’oxyde de graphène (GO) et l’oxyde de graphène réduit (rGO) ont été préparés par deux voies de synthèse (Bromide Anion Exchange - BAE et polyol). Ces catalyseurs mono- (Pt, Au) et bi-métalliques (AuxPty) ont été utilisés en tant qu’anode de pile implantée dans un animal pour alimenter un dispositif de suivi médical. Les caractérisations physico-chimiques (Raman, MET, DRX, XPS) des matériaux ont permis la détermination de leur structure, leur composition de surface et les interactions métal-support. Ensuite, les techniques électrochimiques (voltammétrie, CO-stripping et chronoampérométrie) ont permis de révéler leur activité et stabilité lors de l’oxydation du glucose et la réduction de l’oxygène en milieux alcalin et phosphate. Lors des tests en pile glucose/O2 avec membrane échangeuse d’ions, Pt/rGO s’est imposé comme le catalyseur le plus performant, et les matériaux bimétalliques à haute teneur en platine comme les plus stables. En tampon PBS, les performances de la pile caractérisées par la tension de pile à circuit ouvert (OCV) et la densité de puissance (Pj) atteignèrent respectivement 0,7 V et 28 microW.cm-2. En l’absence de membrane, le mélange des réactifs, conditions proches de l’implantation, montrait un effet inhibiteur sur l’OCV (0,4 V) et la densité de puissance (8 µW.cm-2). Des analyses par chromatographie et spectrométrie de masse ont permis d’identifier le gluconate et le glucuronate comme seuls produits d’oxydation du glucose, qui sont non-toxiques et à haute valeur ajoutée.

  • Catalyseurs sans métaux nobles pour pile à combustible régénérative    - Kumar Kavita  -  25 octobre 2017

    Voir le résumé
    Voir le résumé
    Le dihydrogène (H2) se présente comme le futur vecteur énergétique pour une économie basée sur des ressources propres et respectueuses de l'environnement. Il est le combustible idéal de la pile à combustible régénérative constituée de deux entités : un électrolyseur pour sa production, et une pile à combustible pour sa conversion directe en énergie électrique. Ce système présente l'avantage d'être compact et autonome. Cependant, l'amélioration de l'activité catalytique des matériaux, leur stabilité et l'élimination de métaux nobles dans leur composition sont nécessaires. Des catalyseurs bifonctionnels à base de métaux de transition associés au graphène ont alors été synthétisés. L'interaction oxyde-graphène a été étudiée sur un catalyseur Co3O4/NRGO. À faible teneur en cobalt, l'interaction entre les atomes de cobalt de l'oxyde et les atomes d'azote greffés sur les plans de graphène a été observée par voltammétrie cyclique. Cette interaction est responsable d'une diminution de la taille des nanoparticules de cobaltite et de l'activité de celles-ci vis-à-vis de la réaction de réduction du dioxygène (RRO). La substitution du cobalt par le nickel dans des structures de type spinelle (NiCo2O4/RGO) obtenu par voie solvothermale, a permis d'améliorer les performances électrocatalytiques vis-à-vis de la RRO et de la RDO. Ce matériau et un autre de type Fe-N-C préparé en collaboration avec un laboratoire de l'Université Technique de Berlin ont servi de cathode dans des études préliminaires réalisées en configuration pile à combustible alcaline à membrane échangeuse d'anion (SAFC).

  • Synthèse de nanomatériaux de morphologie coeur@coquille : application à l'oxydation électrocatalytique d'alcools en milieu alcalin    - Silva Rodrigo Garcia da  -  01 juillet 2016

    Voir le résumé
    Voir le résumé
    Cette étude traite de la préparation de nanomatériaux à base de palladium et de platine qui ont une morphologie contrôlée, et de la caractérisation de leur activité électrocatalytique vis-à-vis de l'oxydation de l'éthanol, l'éthylène glycol et le glycérol en milieu alcalin. La détermination des différentes propriétés de ces matériaux utilisés comme catalyseurs anodiques a permis la compréhension des étapes clés et l'élucidation des principaux chemins réactionnels impliqués dans la conversion électrochimique de ces alcools utilisables comme combustible dans une pile. Dans ce contexte, ces nanomatériaux ont été synthétisés soit par la méthode d'auto-assemblage électrostatique, soit par la méthode polyol assistée par microondes. Ces méthodes de synthèse chimique choisies car plus adaptées à cette fin, ont permis d'obtenir des nanoparticules de type cœur@coquille dont les atomes de palladium ou de platine sont situés dans la coquille, et le cœur constitué de nickel, ruthénium ou d'étain. Nanomatériaux synthétisés par auto-assemblage électrostatique - Par souci d'économiser les métaux nobles et précieux, sans pour autant perdre en activité, les électrocatalyseurs synthétisés par auto-assemblage électrostatique ont été dispersés dans du carbone Vulcan XC-72R ou déposés sur des Nanotubes de Carbone (NTC) avec un taux de charge métallique de wt. 40%. Les résultats issus des différentes caractérisations physicochimiques ont montré que les matériaux préparés ont des compositions expérimentales (par Spectroscopie de Rayons-X à Dispersion d’Énergie – EDX) similaires aux valeurs nominales ; les paramètres de maille et volume des particule varient légèrement pour les différents matériaux (Microscopie Electronique en Transmission – MET et Diffraction des Rayons X – DRX), mais ont gardé le caractère cristallographique de la structure cubique à faces centrées du palladium et du platine. Les nanoparticules obtenues sont en général de forme sphérique et ont une taille comprise entre 2 et 9 nm ; leur morphologie indique des systèmes très organisés, mais leur structure coeur@coquille n'a pour l'instant pas été formellement déterminée. Des expériences de CO-Stripping ont permis de caractériser électrochimiquement les surfaces actives les matériaux qui ont été synthétisés. Il en résulte leur surface active augmentent de façon très significative des systèmes monométalliques aux électrodes bimétalliques, en particulier les nanocatalyseurs Ru@Pd/NTC et Ni@Pt/NTC qui ont des surfaces spécifiques respectives de 73 et 74 m²g-1Pd/Pt. Concernant l'électrooxydation des alcools en C2 et C3 dans un électrolyte alcalin (1,0 mol L-1 [NaOH] + 0,5 mol L-1 [alcool]), les électrocatalyseurs contenant du platine et déposés sur des nanotubes de carbone ont une meilleure activité électrocatalytique vis-à-vis de l’oxydation du combustible éthylène glycol en termes de densité de courant mesurée à un potentiel de -0,2 V vs. Hg/HgO/OH-. Par exemple, sur l’électrode de composition Ni@Pt/NTC, il a été relevé en début d’expérience de chronoampérométrie une densité de courant de 200 mA mg-1Pt qui a seulement baissé à 180 mA mg-1Pt après une étude qui a duré 90 minutes. Des analyses par chromatographie liquide (CLHP) ont été entreprises pour déterminer les molécules issues de l’oxydation des combustibles susmentionnés. Les taux de conversion de l'éthylène glycol et du glycérol ont respectivement atteint 74 et 58 % après 12 heures d'électrolyse par chronoampérométrie sur les catalyseurs Ru@Pt/NTC et Ni@Pt/NTC. Si l’oxydation du glycérol produit sélectivement des ions formiate et oxalate sur Ru@Pt/NTC, elle conduit majoritairement aux ions tartronate et mesoxalate sur l’électrode Ni@Pt/NTC, révélant ainsi deux chemins réactionnels de la transformation électrochimique du combustible glycérol selon la structure cœur-coquilles du matériau bimétallique.

  • Transformation électrocatalytique de sucres couplée à la réduction enzymatique de l'oxygène moléculaire pour la production d'énergie    - Holade Yaovi  -  26 juin 2015

    Voir le résumé
    Voir le résumé
    Le développement de générateurs d'énergie pour alimenter des micro-appareils électroniques implantés est devenu une option inéluctable. L'objectif général qui a orienté ces recherches était l'élaboration et les études approfondies des propriétés nanomatériaux métalliques utilisables comme électrocatalyseurs afin de convertir l'énergie chimique en énergie électrique. Les nanomatériaux sont obtenus par la méthode de synthèse : Bromide Anion Exchange (BAE) qui a été scrupuleusement revisitée puis optimisée avec un agent réducteur faible (AA) et fort (NaBH4). Cette voie de synthèse a permis d'obtenir (rendement ≥ 90 %) des matériaux plurimétalliques composés d'or, de platine et de palladium. Un prétraitement des supports commerciaux des nanoparticules a permis d’augmenter leurs surfaces, spécifique et active respectivement de 48 et 120 %. Les études (électro)analytiques ont permis d'identifier les intermédiaires et produits de réaction du combustible. Le glucose s'oxyde sans rupture de la liaison C-C pour donner majoritairement du gluconate avec une sélectivité ≥ 88 %. Les tests réalisés en biopile hybride (cathode enzymatique) indiquent que les catalyseurs Au/C-AA et Au60Pt40/C-NaBH4 sont les meilleures anodes abiotiques (Pmax = 125 µW·cm-2 à 0,4 V). Par ailleurs, les piles sans membrane séparatrice et sans enzyme ont été réalisées avec succès pour activer un stimulateur cardiaque et un système de transmission d'information en mode "Wifi". Ces dispositifs, rapportés pour la première fois, ouvrent une ère nouvelle pour la conception de convertisseurs d'énergie pour alimenter les implants médicaux ou des appareils sans fil de détection et de surveillance.

  • Synthèse et caractérisation de matériaux électrocatalytiques : activation anodique de l'eau dans un électrolyseur PEM    - Audichon Thomas  -  13 novembre 2014

    Voir le résumé
    Voir le résumé
    Le dihydrogène se présente comme un vecteur énergétique d'avenir pour la diversification des sources de production d'énergie. L'électrolyse de l'eau dans le système PEMWE (Proton Exchange Membrane Water Electrolyzer) permet l'obtention de dihydrogène de grande pureté. Les atouts de cette technologie induite par l'utilisation d'assemblage membrane électrode (AME) permettent son couplage aux énergies renouvelables. Toutefois, l'amélioration de l'activité catalytique des matériaux anodiques et leur stabilité pour baisser la tension de cellule et la diminution de la teneur en métaux nobles dans la composition des matériaux sont nécessaires. Lors de ces travaux de thèse, une voie de synthèse a été élaborée pour préparer des nanomatériaux à base de ruthénium. L'ajout d'iridium a permis dans un premier temps de prévenir l'oxyde de ruthénium de la dissolution tout en maintenant l'activité du catalyseur initial. Les meilleures performances catalytiques des AMEs en termes de densité de courant, de tension de cellule et de durabilité ont été délivrées avec les matériaux anodiques dont la composition molaire en Ru est supérieure à 70 %. La substitution partielle des métaux précieux (Ru et Ir) par du cérium et du niobium dans le but de proposer des catalyseurs à moindre coût a été aussi réalisée. Contrairement au niobium qui apporte une phase amorphe dans la structure du matériau, le cérium jusqu'à une teneur de 10 % permet de conserver les performances de l'anode telles que obtenues dans le matériau bimétallique. Le cérium se présente donc comme un métal prometteur à intégrer de manière appropriée dans la composition des matériaux anodiques.

  • Études électrochimiques des nanoparticules d'or : corrélation structure/activité    - Hebié Seydou  -  18 novembre 2013

    Voir le résumé
    Voir le résumé
    Les propriétés inattendues des nanoparticules d'or font que le contrôle de leur taille, de leur forme et/ou de leur morphologie devient essentiel pour une application ciblée. Des formes variées de nanoparticules en solution colloïdale ont été synthétisées. L'analyse de ces solutions par spectroscopie UV-Visible montre que les nanoparticules anisotropes ont deux bandes plasmoniques. Aussi, le potentiel zêta mesuré révèle que les solutions sont stables dans les conditions d'étude. La caractérisation par la microscopie électronique en transmission a permis d'observer que leur surface présente différentes orientations cristallographiques. Le dépôt sous potentiel du plomb par voltammétrie cyclique a révélé les sites cristallographiques à la surface de ces nanomatériaux. Ces matériaux présentent des proportions de surface orientée (111), (110) et (100) et de défauts cristallins en accord avec les résultats de microscopie. L'étude électrochimique dans l'électrolyte support montre que la formation des oxydes sur ces nanomatériaux dépend de leur structure. La cinétique de croissance des couches d’oxyde sur les nanobâtonnets d’or dépend fortement du potentiel, du temps de polarisation et de la température. Des différentes formes structurales des nanomatériaux d'or synthétisés et en présence de molécules modèles telles que le glucose et l'acide formique, les nanosphères présentent l'activité la plus forte pour l'oxydation du glucose ; tous les nanomatériaux sont moins actifs pour l'oxydation de l'acide formique. Les analyses par FTIR in situ mettent en évidence la gluconolactone comme intermédiaire de cette réaction et la forte influence de la structure de surface.

  • Synthèse et caractérisation de nanocatalyseurs à base de palladium pour l'oxydation du glucose et la réduction de l'oxygène moléculaire en milieu alcalin    - Diabaté Donourou  -  18 décembre 2012

    Voir le résumé
    Voir le résumé
    L'objet de cette étude était le développement de nanocatalyseurs pour une application dans une pile glucose/oxygène en milieu alcalin. Avec la demande de plus en plus croissante d'énergie propre et moins chère, il paraît judicieux de s'orienter vers des dispositifs moins toxiques de pile à combustible qui peuvent utiliser le glucose comme combustible. Ce travail de thèse s’est donc attaché à synthétiser et caractériser de nouveaux matériaux catalytiques à base de palladium (Pd/C, PdAg/C et PdNi/C) et à analyser leur activité vis-à-vis des réactions de réduction de l'oxygène et de l'électrooxydation du glucose. Les nanocatalyseurs utilisés lors de ces travaux ont été synthétisés par microémulsion «water-in-oil» et sont supportés sur du carbone Vulcan XC-72R. Les caractérisations physiques montrent des nanoparticules assez uniformes et la taille moyenne des particules reste inférieure à 5 nm. La réaction de réduction de l'oxygène commence tôt à la surface de ces catalyseurs (environ 0,92 V vs. ERH) et le nombre d'électrons échangés est proche de 4. Le couplage voltammétrie / spectroscopie IR a permis de montrer que le glucose s’oxyde à bas potentiel à la surface de ces électrodes. Le produit primaire de cette déshydrogénation est la gluconolactone qui s’hydrolyse en solution en gluconate. Le dioxyde de carbone est aussi un produit d’oxydation. Sa présence à des potentiels élevés montre que le squelette de la molécule initiale du glucose subit une adsorption dissociative notamment sur Pd70Ag30.

  • Étude des interfaces des nanocatalyseurs / glucose et enzymes / O2 pour une application biopile    - Tonda-Mikiela Pradel  -  11 décembre 2012

    Voir le résumé
    Voir le résumé
    Les travaux présentés dans cette thèse visent à étudier les interfaces "nanocatalyseur/glucose" et "enzyme/O2" d'une biopile hybride. Dans ce cadre, une nouvelle méthode de synthèse de nanoparticules à base d'or et de platine a été développée. Ces nanomatériaux ont été caractérisés par différentes méthodes physicochimiques pour connaître leur taille, leur morphologie et leur dispersion dans un substrat carboné (Vulcan XC72R). La surface active de chaque électrode a été déterminée par voltammétrie cyclique et par CO stripping. Il a été montré que dans les catalyseurs AuxPty, l'or a un effet promoteur sur le platine vis-à-vis de l'oxydation du glucose. Le catalyseur Au70Pt30 présente la meilleure activité catalytique. L'étude par spectroélectrochimie a permis de déterminer que la B–gluconolactone est le produit primaire de l'oxydation du glucose qui procède à bas potentiel par la déshydrogénation du carbone anomérique sur le platine. La réaction de réduction de O2 a été catalysée par une enzyme, la bilirubine oxydase (BOD). Pour faciliter le transfert électronique, deux médiateurs : ABTS et un complexe d'osmium ont été encapsulés avec l'enzyme dans une matrice de Nafion® pour créer les interfaces : BOD/ABTS/O2 et BOD/Os/O2. L'étude voltammétrique des deux médiateurs en milieu tampon phosphate a révélé deux systèmes quasi-réversibles avec des potentiels apparents proches du potentiel redox du site T1 de la BOD. Bien que difficilement comparables en termes de densité de courant au catalyseur constitué de nanoparticules de platine, les cathodes enzymatiques permettent de catalyser à quatre électrons la réduction de O2 à des potentiels très proches du potentiel de Nernst.

|< << 1 2 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales