Vous êtes ici : Accueil > Directeurs de thèse > De Oliveira Vigier Karine > De Oliveira-Vigier Karine

De Oliveira-Vigier Karine

Les thèses encadrées par "De Oliveira-Vigier Karine"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
3 ressources ont été trouvées. Voici les résultats 1 à 3
Tri :   Date Auteur Titre thèses par page
  • Conversion catalytique de sucres en sorbitans : utilisation du CO₂    - Bonnin Isaline  -  30 septembre 2022

    Voir le résumé
    Voir le résumé
    Il est nécessaire de développer des synthèses durables pour la valorisation des composés oxygénés provenant de la biomasse. Comme l’eau est indispensable pour dissoudre ces composés, des synthèses one-pot évitant l’élimination coûteuse de l’eau entre chaque étape est l’une des stratégies adoptées. Ici, la synthèse one-pot du glucose aux sorbitans porte notre intérêt. Le glucose est un monosaccharide contenu dans la partie carbohydrate de la lignocellulose et l’hydrogénation du glucose via un catalyseur métallique supporté mène au sorbitol. Le sorbitol peut être déshydraté en milieu acide en sorbitans et notamment en 1,4-sorbitan, un produit de forte valeur ajouté dédié au secteur alimentaire, cosmétique et médical. Cependant, un mélange de sorbitans et d’isosorbide, provenant de la déshydratation du 1,4-sorbitan, est généralement obtenu. Le défi repose donc dans le contrôle de cette dernière réaction pour cibler une seule molécule. Pour cela, l’acide sulfurique conventionnel est remplacé par du CO₂ gazeux pour assurer un contrôle réversible de l’acidité. L’objectif est d’obtenir sélectivement le 1,4-sorbitan en partant du glucose par synthèse one-pot impliquant un catalyseur hydrogénant et de l’H₂ pour l’hydrogénation du glucose ainsi que du CO₂ pour déshydrater le sorbitol. Dans ce but, chaque réaction est étudiée séparément avant de les combiner en une synthèse one-pot. Le Chapitre 1 porte sur l’hydrogénation du glucose en sorbitol. Il a été démontré qu’un catalyseur commercial sans modification du support est actif et sélectif pour l’hydrogénation de sucres en polyols. Typiquement, le glucose est totalement convertit en 90 % de sorbitol sous 30 bar de H₂ à 120°C après 2 h avec 5 % m. de Ru/Al₂O₃, catalyseur qui peut être recyclé 10 fois.Distinctement, les catalyseurs Pt/Al₂O₃ et Pd/Al₂O₃ sont inactifs pour l’hydrogénation du glucose en sorbitol et des études mécanistiques in operando par spectroscopie infrarouge et Raman ont été menées pour tenter d’expliquer ces observations. Le Chapitre 2 concerne l’optimisation de la seconde étape. Il a été montré que l’addition de faible pression en CO₂ de 30 bar permet de déshydrater le sorbitol grâce à la génération d’acide carbonique acidifiant le milieu. L’effet catalytique du CO₂ observé expérimentalement est confirmé par une approche théorique via des calculs DFT. Une sélectivité en 1,4-sorbitan de 73 % est atteinte à 220°C après 48 h, le sorbitol n’est pas dégradé en humins et environ 15 % de produits secondaires sont obtenus. La sélectivité des produits est expliquée par de la modélisation moléculaire au préalable de l’étude des aspects mécanistiques de la déshydratation assistée par du CO₂. Cette dernière étude prouve que la forte sélectivité en 1,4-sorbitan est due à des contraintes thermodynamiques. Le Chapitre 3 traite des réactions optimisées regroupées en un procédé one-pot. Dans un premier protocole, tous les réactifs sont directement ajoutés dans le réacteur batch pour hydrogéner le glucose à 120°C en sorbitol puis déshydrater le sorbitol à 220°C. Cependant, le rendement en 1,4-sorbitan chute drastiquement dans ces conditions en comparaison des réactions séparées. L’étude in operando des réactions séparées en condition one-pot par spectroscopie infrarouge et Raman permettent d’expliquer cette chute. La surface du catalyseur est passivée par des carbonates et le sorbitol est dégradé en CH₄ en présence de H₂ et du catalyseur Ru/Al₂O₃. Pour éviter ces effets, la synthèse one-pot est remplacée par un protocole en deux étapes où les réactifs sont insérés et changés successivement à la température requise pour des réactions multi-étapes. De plus, le catalyseur n’est pas récupéré entre les étapes afin d’effectuer la synthèse sans interruption. À la fin, le glucose est totalement convertit en 33 % de 1,4-sorbitan et 5 % d’isosorbide tandis que 16 % de sorbitol n’a pas réagi. Ces résultats sont en accord avec les rendements hypothétiques des deux réactions effectuées séparément

  • Conversion catalytique du furfural en alkyl lévulinate en milieu concentré    - Billoré Tony  -  30 avril 2021

    Voir le résumé
    Voir le résumé
    Les utilisations des ressources fossiles sont nombreuses. Nous les utilisons principalement dans les secteurs des transports, de l’industrie, pour le chauffage ou pour la chimie. Malheureusement les réserves en sont limitées et leur exploitation émet des gaz à effet de serre, responsables du réchauffement climatique. Pour contrer cela, nous devons rapidement trouver une alternative moins polluante. La biomasse peut être une solution, c’est une ressource renouvelable composée de matériaux lignocellulosiques, possédant de nombreuses applications utiles dans la vie courante. La biomasse peut être utilisée comme source d’énergie ou comme matière première pour la synthèse de produits chimiques. Les produits chimiques biosourcés peuvent être utilisés en tant qu’additifs pour carburant, substituts de solvants, ou plus généralement de produits issues de la pétrochimie. Dans cette thèse, nous avons formé des alkyl lévulinates à partir du furfural. Le furfural est un produit chimique issu des pentoses, un type de sucre. Ces pentoses sont contenus dans l’hémicellulose, un polysaccharide essentiel à la structure des plantes. Certaines parties des plantes contiennent de fortes teneurs en hémicellulose, comme la rafle de maïs ou la bagasse, matières premières principales pour la production de furfural. L’utilisation majoritaire du furfural est son hydrogénation en alcool furfurylique. Ce composé réagit avec des alcools aliphatiques, en présence d’un catalyseur acide, pour donner des alkyl lévulinates : cette réaction est appelé alcoolyse. Le but de nos travaux est de convertir le furfural par procédé one-pot, directement en alkyl lévulinate, avec le plus haut rendement, sans passer par la purification intermédiaire de l’alcool furfurylique et en utilisant une forte concentration de furfural. Pour ce faire, nous avons tout d’abord étudié l’hydrogénation du furfural en présence de Ru/C ou de Ru/Al2O3 avec du dihydrogène et dans un alcool. De ce fait, nous avons formé de l’alcool furfurylique et compris l’influence des paramètres réactionnels et les interactions entre les catalyseurs et le milieu réactionnel. Nous avons ensuite étudié et créé un modèle pour la réaction d’alcoolyse de l’alcool furfurylique, donnant l’alkyl lévulinate. Nous avons utilisé différents catalyseurs, comme le triflate de bismuth, AlCl3, HCl ou l’hydrochlorure de bétaïne. Nous avons examiné la qualité de notre modèle et nous avons recherché le meilleur moyen de convertir l’alcool furfurylique afin d’augmenter la sélectivité et le rendement en alkyl lévulinates. Notre modèle et nos expériences nous ont permis de détecter un intermédiaire réactionnel que nous n’avons pas clairement identifié. Finalement, nous avons combiné les deux réactions précédentes en one-pot. Avec cette méthode, notre but est de convertir l’alcool furfurylique, produit du furfural, directement en alkyl lévulinate, empêchant ainsi l’augmentation de sa concentration au point où des humines sont formées. Nous avons étudié les interactions entre catalyseurs, solvants et réactifs et analysé les produits pouvant être formé à partir de cette méthode afin d’augmenter le rendement en alkyl lévulinate. Nous avons alors utilisé différentes combinaisons de catalyseurs, alcools et paramètres réactionnels.

  • Synthèse et fonctionnalisation d'aldéhydes issus de la coupure d'esters gras insaturés    - Louis Kévin  -  15 novembre 2013

    Voir le résumé
    Voir le résumé
    La valorisation du carbone renouvelable joue un rôle croissant dans l'industrie chimique. Ces travaux rapportent l'utilisation d'huiles végétales comme matières premières en substitution de celles d'origine fossiles pour la synthèse de monomères bio-sourcés destinés à la production de polyesters ou de polyamides. La production du 9 oxononanoate de méthyle, comme molécule plateforme, à partir d'esters méthyliques d'huile de colza a été réalisée par coupure oxydante (ozonolyse) sans solvant à température ambiante, suivie d'une réduction des intermédiaires par hydrogénation catalytique sous pression de H2 et de Pd(5)/C. Ainsi, le rendement en aldéhyde-ester est de 92%. Ce procédé a été appliqué à la synthèse de molécules plateformes avec des longueurs de chaînes de 9 à 13 atomes de carbone. Une matière première renouvelable, des conditions de réaction douces, le recyclage du catalyseur et des co-produits non toxiques et valorisables ont permis de développer un procédé durable plus respectueux de l'environnement. La réduction de la fonction aldéhyde a été menée par hydrogénation catalytique, à 50°C dans le méthanol, pour former l'alcool-ester correspondant. Le nickel de Raney ainsi que le Pd(5)/C offrent des rendements en 9-hydroxynonanoate de méthyle supérieurs à 90 %, mais le premier catalyseur conduit à un temps de réaction plus court. L'amination réductrice de la fonction aldéhyde a été menée avec succès à partir de NH3 gazeux et de Pd(5)/C, à 50°C dans le méthanol, pour conduire majoritairement à la synthèse de l'amino-ester primaire. La quantité de NH3(g) influence la sélectivité et au moins trois équivalents sont nécessaires pour limiter la formation d'amino-ester.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales