Vous êtes ici : Accueil > Directeurs de thèse > Bertrand Yves

Bertrand Yves

Les thèses encadrées par "Bertrand Yves"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
3 ressources ont été trouvées. Voici les résultats 1 à 3
Tri :   Date Auteur Titre thèses par page
  • Transformations de graphes pour la modélisation géométrique à base topologique    - Bellet Thomas  -  10 juillet 2012

    Voir le résumé
    Voir le résumé
    De nombreux domaines comme le jeu vidéo, l’architecture, l’ingénierie ou l’archéologie font désormais appel à la modélisation géométrique. Les objets à représenter sont de natures diverses, et leurs opérations de manipulation sont spécifiques. Ainsi, les modeleurs sont nombreux car tous spécialisés à leur domaine d’application. Or ils sont à la fois chers à développer, souvent peu robustes, et difficilement extensibles. Nous avons proposé dans la thèse l’approche alternative suivante : – fournir un langage dédié à la modélisation qui permet de définir les opérations quelque soit le domaine d’application ; dans ce langage, les objets sont représentés avec le modèle topologique des cartes généralisées, dont nous avons étendu la définition aux plongements ; les opérations sont elles définies par des règles de transformation de graphes, issues de la théorie des catégorie ; – garantir les opérations définies dans le langage à l’aide de conditions de cohérence ; une opération dont la définition vérifie ces conditions ne produit pas d’anomalie ; – développer un noyau de modeleur générique qui interprète ce langage ; les opérations définies sont directement appliquées dans le modeleur, sans implantation dans un langage de programmation ; l’outil assure également la vérification automatique des conditions du langage pour prévenir un utilisateur lorsqu’il propose une opération incohérente. Le langage et le modeleur développés se sont révélés performants à la fois en termes de temps de développement et en termes de temps machine. L’implantation d’une nouvelle opération par une règle ne prend que quelques minutes à l’aide des conditions du langage, au contraire de l’approche classi

  • Système de nomination hiérarchique pour les systèmes paramétriques    - Baba-Ali Mehdi  -  22 janvier 2010

    Voir le résumé
    Voir le résumé
    Au début des années 60, les systèmes de modélisation géométrique sont apparus. D'abord cantonnés à de simples outils d'esquisse, ils ont su, au fil des années, se doter de modèles géométriques plus élaborés (tant sur l'aspect plongement avec les courbes et surfaces paramétriques ou les surfaces implicites que sur l'aspect topologie avec des modèles à base combinatoire) et des informations additionnelles permettant la gestion de divers aspects du processus de modélisation industrielle. Les modèles géométriques permettent de décrire des formes géométriques en s'appuyant sur des structures topologiques très variées. Cependant, les opérations de modèlisation menant à ces descriptions ne prennent pas en compte les intentions de l'utilisateur du fait qu'elles n'utilisent ni son langage, ni ses gestes et moins encore son expérience métier. C'est pourquoi on a associé aux modèles géométriques initiaux des informations supplémentaires connues sous le terme de caractéristiques (features) et en particulier les caractéristiques de formes (rainure, bossage, arrondi, etc.). Si la description par caractéristiques (géométrie, paramètres des opérations de modèlisation de haut niveau, contraintes) est enregistrée pour être exploitée dans la perspective d'être réutilisée (réévaluée en faisant varier les paramètres), on parle alors de modèlisation paramétrique basée historique (ou history-based en terminologie anglo-saxonne). Aussi, un modèle paramétrique, de par sa structure duale, pose le problème de la nomination persistante qui dérive de la nécessité de maintenir un lien entre la géométrie et sa représentation implicite en termes de script de modèlisation. Dans ce contexte, plusieurs solutions ont été proposées. Chacune d'entre elles s'efforce de caractériser (de façon unique et non ambigüe) puis apparier (c'est-à-dire mettre en correspondance) les entités des modèles initial et réévalué. Dans un environnement 3D extrêmement variant, les approches actuelles s'appuient sur des éléments invariants -les faces- pour mettre en oeuvre différents procédés de caractérisation. En les étudiant de plus près, on constate d'une part que ces procédés ne proposent pas de caractérisation homogène pour les entités ou les agrégats d'entités de dimension supèrieure ou égale à 3. Cela limite la généralisation en toute dimension des mécanismes de nomination (caractérisation et appariement). D'autre part, ces méthodes pêchent de façon plus ou moins importante lorsqu'il s'agit de manipuler des objets dans un contexte non-planaire. Dans ce mémoire, nous nous intéressons à la nomination persistante et homogène des entités de toute dimension (sommets, arêtes, agrégats d'arêtes, faces, agrégats de faces (" coques "), volumes, agrégats de volumes, etc.) et celles résultant de l'interaction d'objets non-planaires. Pour ce faire, nous proposons une plate-forme hiérarchique mettant en scène, par des relations d'agrégations, des entités de n'importe quelle dimension. Notre idée est alors de commencer par nommer, c'est-à-dire caractériser et apparier, les entités de la plus petite dimension exploitable : les arêtes. La gestion des noms au niveau des arêtes s'effectue principalement via un graphe traçant l'évolution de ces entités au cours du processus de modèlisation paramétrique. Ensuite, nous faisons en sorte d'exploiter l'appariement calculé entre ces arêtes, en parcourant la structure hiérarchique et agrègative, afin d'en déduire celui entre les entités de dimension supèrieure. Notre solution est implantée sur un noyau géométrique basé sur le modèle des cartes généralisées.

  • Reconstruction géométrique et topologique de complexes architecturaux 3D à partir de plans numériques 2D    - Horna Sébastien  -  27 novembre 2008

    Voir le résumé
    Voir le résumé
    L'intérieur des bâtiments est souvent modélisé en 3D pour diverses applications de modélisation ou de simulation. Par exemple, plusieurs méthodes permettent d'étudier l'éclairage, les transferts de chaleur, la propagation d'ondes. Ces applications nécessitent dans la plupart des cas une représentation volumique de l'environnement avec des relations d'adjacence et d'incidence entre les éléments. Malheureusement, les données correspondant au bâtiment sont en général seulement disponibles en 2D et les besoins des applications 3D varient d'une utilisation à l'autre. Pour résoudre ce problème, nous proposons une description formelle d'un ensemble de contraintes de cohérence dédiées à la modélisation d'intérieur de bâtiments. Dans cette thèse nous montrons comment cette représentation est utilisée pour : (i) reconstruire un modèle 3D à partir de plans d'architecte numériques 2D ; (ii) détecter automatiquement les incohérences géométriques, topologiques et sémantiques ; (iii) développer des opérations automatiques et semi-automatiques pour corriger les plans 2D. Toutes les contraintes de cohérence sont définies en 2D et 3D et reposent sur le modèle topologique des cartes généralisées. Ces opérations sont utilisées pour éditer les scènes 2D et 3D afin d'affiner ou de modifier les modèles. Enfin, nous expliquons comment ce modèle est utilisé pour une application de visualisation par lancé de rayons.

|< << 1 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales