Vous êtes ici : Accueil > Auteurs > Rajhi Anis

Rajhi Anis

La thèse soutenue par "Rajhi Anis"

accès internet    accès intranet    confidentialité
1 ressource a été trouvée.
  • Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N)    - Rajhi Anis  -  01 octobre 2014

    Voir le résumé
    Voir le résumé
    Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe GL(2) sur un corps p-adique. Plus précisément, on a construit une tour projective d'espaces fibrés au-dessus du 1-squelette de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. On a montré que toute représentation cuspidale π de GL(n) se plonge avec multiplicité 1 dans le premier espace de cohomologie à support compact du k-ième étage de la tour, où k est le conducteur de π. Dans la deuxième partie on a construit un espace W au-dessus de la subdivision barycentrique de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. Pour étudier les espaces de cohomologie à support compact d'un G-complexe simplicial propre X muni d'un recouvrement équivariant assez particulier, où G est un groupe localement compact totalement discontinu, on a montré l'existence d'une suite spactrale dans la catégorie des représentations lisses de G qui converge vers la cohomologie à support compact de X. En s'appuyant sur ce dernier résultat, on a calculé la cohomologie à support compact de l'espace W comme représentation lisse de GL(n) puis on a montrer que les types cuspidaux de niveau 0 de GL(n) apparaissent avec multiplicité fini dans la cohomologie de certain complexes fini construit au niveau résiduel. Comme conséquence, on montre que les représentations cuspidales de niveau 0 de GL(n) apparaissent dans la cohomologie de W.

|< << 1 >> >|

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales