Vous êtes ici : Accueil > Auteurs > Douat Benjamin

Douat Benjamin

La thèse soutenue par "Douat Benjamin"

accès internet    accès intranet    confidentialité
1 ressource a été trouvée.
  • Étude de surfaces sous contrainte à l'échelle atomique : application au cas du niobium    - Douat Benjamin  -  25 juin 2018

    Voir le résumé
    Voir le résumé
    Les mécanismes de déformation plastique des matériaux cubiques à corps centré sont étudiés depuis plus d’un demi-siècle. Il est maintenant bien établi que les dislocations vis contrôlent la plasticité de ces matériaux. Ceci est dû à une structure non-plane du cœur de ces dislocations, qui induit une forte friction de réseau communément appelée ‘pseudo-Peierls’. Le mécanisme supposé est la nucléation thermiquement activée de paires de décrochements. Cette structure de cœur particulière limite également les plans de glissement possibles. Les traces de glissement aux échelles méso et microscopiques apparaissent ‘ondulées’, ce qui a amené à proposer toute une variété de plans de glissement. Dans ce contexte, nous avons analysé à une échelle plus fine, i .e. à l’échelle atomique, les traces de glissement obtenues par déformation en compression de monocristaux de niobium à des températures situées dans le régime de température thermiquement activé: 293 K, 200 K et 90 K. L’analyse par microscopie à effet tunnel sous environnement ultra vide indique qu’à la résolution atomique chaque trace de glissement peut être décomposée en segments associés à des plans de type {112} et {110}. De manière surprenante, il est mis en évidence qu’à 293 K et 200 K du glissement se produit à la fois dans le sens maclage et antimaclage. De plus, toutes les traces de glissement impliquent du glissement sur des plans de type {110}, étayant ainsi la structure de cœur compact prévue par simulations atomistiques ab initio. L’étude in situ de la surface sous contrainte, à T = 293 K et 200 K, a aussi mis en évidence des réorganisations, voire des disparitions, de terrasses atomiques au voisinage de dislocations émergentes. Le calcul des forces d’interaction en élasticité linéaire isotrope montre que les dislocations proches de ces terrasses ne jouent pas de rôle prépondérant sur la position d’équilibre des terrasses. En revanche, celles-ci modifient localement le potentiel chimique de surface, favorisant la diffusion atomique à l’origine des réorganisations de surface constatées expérimentalement.

|< << 1 >> >|

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales