• ENT
  • Intranet
  • Portail étudiant
  • Portail université

Outils accessibilité :

  • Accessibilité |
  • Aller au contenu |
  • Aller au menu
 

UPThèses

Recherche

Cardot Anais

Rejeu basé sur des règles de transformation de graphes

frDépôt légal électronique

Consulter le texte intégral de la thèse (format PDF)  

Couverture du document

Index

École doctorale :

  • SISMI – Sciences et ingénierie des systèmes, mathématiques, informatique

UFR ou institut :

  • UFR des sciences fondamentales et appliquées (SFA)

Secteur de recherche :

  • Informatique et applications

Section CNU :

  • Informatique

Résumé

  • Français
  • English
 

Français

Rejeu basé sur des règles de transformation de graphes

Réaliser des variations d'un même modèle est un besoin en expansion dans de nombreux domaines de modélisation (architecture, archéologie, CAO, etc.). Mais la production manuelle de ces variations est fastidieuse, il faut donc faire appel à des techniques permettant de rejouer automatiquement tout ou partie du processus de construction du modèle, après spécification des modifications. La majorité des approches dédiées à la réalisation du rejeu sont basées sur un système de modélisation paramétrique, composée d’un modèle géométrique et d’une spécification paramétrique permettant d’enregistrer la succession d’opérations l’ayant créé ainsi que leurs paramètres. On peut ensuite faire varier ces paramètres ou éditer cette liste d’opérations afin de modifier le modèle. On utilise pour cela un système de nommage persistant, introduit dans les années 90, et permettant d’identifier et d’apparier les entités d’une spécification initiale et celles d'une spécification rejouée. L’objectif de cette thèse est de proposer un système de nommage persistant général, homogène et permettant de gérer l’édition de spécification paramétriques (déplacer, ajouter et supprimer des opérations). Nous nous basons sur la bibliothèque Jerboa, qui repose sur des règles de transformation de graphes, tant pour utiliser ces règles dans la réalisation de la méthode de nommage que pour lier les notions de spécification paramétrique à ces règles de transformations de graphes. Nous décrivons ensuite comment exploiter notre méthode de nommage pour rejouer et éditer des spécifications paramétriques d’opérations, puis nous la comparons avec les approches de la littérature.

Mots-clés libres : Spécification paramétrique, rejeu, nommage persistant, règles de transformation de graphe, cartes généralisées.

    Rameau (langage normalisé) :
  • Théorie des graphes topologiques
  • Modélisation tridimensionnelle
  • Identification des systèmes
  • Modèles mathématiques

English

Reevaluation based on graph transformation rules

In many modelling fields, such as architecture, archaeology or CAD, performing many variations of the same model is an expanding need. But building all those variations manually takes time. It is therefore needed to use automatic technics to revaluate some parts of a model, or even an entire model, after the user specifies the modifications. Most of the existing approaches dedicated to revaluating models are based on a system called parametric modelling. It is made of two parts, a geometric model and a parametric specification, which allows to record the series of operation that created the model, and the different parameters of those operations. This way, the user can change some parameters, or edit the list of operations to modify the model. To do so, we use a system called persistent naming, introduced during the 90ies, that allows us to identify and match the entities of an initial specification and the ones of a revaluated specification. In this thesis, our goal is to propose a persistent naming system that would be general, homogeneous and that would allow the user to edit a parametric specification (which means move, add, or delete some operations). We base our system on the Jerboa library, which uses graph transformation rules. This way, we will be able to use those rules to create our naming system, while also linking the notions of graph transformation rules and parametric specification. We will then describe how to use our naming method to revaluate or edit parametric specifications. Finally, we will compare our method with the other ones from the literature.

Keywords : Parametric specification, reevaluation, persistent naming, graph transformation rules, generalized maps..

Notice

Diplôme :
Doctorat d'Université
Établissement de soutenance :
Université de Poitiers
UFR, institut ou école :
UFR des sciences fondamentales et appliquées (SFA)
Laboratoire :
XLIM
Domaine de recherche :
Informatique et Applications
Directeur(s) de thèse :
Pascal Lienhardt, Xavier Skapin, David Marcheix
Date de soutenance :
30 janvier 2019
Président du jury :
David Cazier
Rapporteurs :
David Cazier, Marc Daniel
Membres du jury :
Pascal Lienhardt, Xavier Skapin, David Marcheix, Guillaume Damiand

  • Tweeter
  • Partager
 

Menu :

  • Rechercher par...

    • Années de soutenance
    • Auteurs
    • Directeurs de thèse
    • Écoles doctorales
    • Secteurs de recherche
    • Sections CNU
    • UFR, instituts et Écoles
    • Recherche ciblée
  • À propos d'UPthèses

    • Présentation
    • Mode d'emploi
    • Contacts
  • Voir aussi

    • theses.fr
    • Bibliothèques de l'UP
    • Sudoc

Annexe :

  • Une question ?

    Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales