• ENT
  • Intranet
  • Portail étudiant
  • Portail université

Outils accessibilité :

  • Accessibilité |
  • Aller au contenu |
  • Aller au menu
 

UPThèses

Recherche

Peng Shuiran

Analyse mathématique et numérique de plusieurs problèmes non linéaires

frenDépôt légal électronique

Consulter le texte intégral de la thèse (format PDF)  

Couverture du document

Index

École doctorale :

  • S2IM - Sciences et ingénierie pour l'information, mathématiques

UFR ou institut :

  • UFR des sciences fondamentales et appliquées (SFA)

Secteur de recherche :

  • Mathématiques et leurs interactions

Section CNU :

  • Mathématiques appliquées et applications

Résumé

  • Français
  • English
 

Français

Analyse mathématique et numérique de plusieurs problèmes non linéaires

Cette thèse est consacrée à l’étude théorique et numérique de plusieurs équations aux dérivées partielles non linéaires qui apparaissent dans la modélisation de la séparation de phase et des micro-systèmes électro-mécaniques (MSEM). Dans la première partie, nous étudions des modèles d’ordre élevé en séparation de phase pour lesquels nous obtenons le caractère bien posé et la dissipativité, ainsi que l’existence de l’attracteur global et, dans certains cas, des simulations numériques. De manière plus précise, nous considérons dans cette première partie des modèles de type Allen-Cahn et Cahn-Hilliard d’ordre élevé avec un potentiel régulier et des modèles de type Allen-Cahn d’ordre élevé avec un potentiel logarithmique. En outre, nous étudions des modèles anisotropes d’ordre élevé et des généralisations d’ordre élevé de l’équation de Cahn-Hilliard avec des applications en biologie, traitement d’images, etc. Nous étudions également la relaxation hyperbolique d’équations de Cahn-Hilliard anisotropes d’ordre élevé. Dans la seconde partie, nous proposons des schémas semi-discrets semi-implicites et implicites et totalement discrétisés afin de résoudre l’équation aux dérivées partielles non linéaire décrivant à la fois les effets élastiques et électrostatiques de condensateurs MSEM. Nous faisons une analyse théorique de ces schémas et de la convergence sous certaines conditions. De plus, plusieurs simulations numériques illustrent et appuient les résultats théoriques.

Mots-clés libres : Séparation de phase, équations d'Allen-Cahn et Cahn-Hilliard, anisotropie, modèles d'ordre élevé, caractère bien posé, attracteur global, micro-systèmes électro-mécaniques (MSEM), schémas semi-implicites et implicites, simulations numériques..

    Rameau (langage normalisé) :
  • Anisotropie
  • Attracteurs (mathématiques)
  • Équations de Cahn-Hilliard
  • Simulation par ordinateur
  • Systèmes dynamiques non linéaires

English

Mathematical and numerical analysis of some nonlinear problems

This thesis is devoted to the theoretical and numerical study of several nonlinear partial differential equations, which occur in the mathematical modeling of phase separation and micro-electromechanical system (MEMS). In the first part, we study higher-order phase separation models for which we obtain well-posedness and dissipativity results, together with the existence of global attractors and, in certain cases, numerical simulations. More precisely, we consider in this first part higher-order Allen-Cahn and Cahn-Hilliard equations with a regular potential and higher-order Allen-Cahn equation with a logarithmic potential. Moreover, we study higher-order anisotropic models and higher-order generalized Cahn-Hilliard equations, which have applications in biology, image processing, etc. We also consider the hyperbolic relaxation of higher-order anisotropic Cahn-Hilliard equations. In the second part, we develop semi-implicit and implicit semi-discrete, as well as fully discrete, schemes for solving the nonlinear partial differential equation, which describes both the elastic and electrostatic effects in an idealized MEMS capacitor. We analyze theoretically the stability of these schemes and the convergence under certain assumptions. Furthermore, several numerical simulations illustrate and support the theoretical results.

Keywords : Phase separation, Allen-Cahn and Cahn-Hilliard equations, higher-order models, anisotropy, well-posedness, global attractor, micro-electromechanical system (MEMS), semi-implicit and implicit schemes, numerical simulations..

Notice

Diplôme :
Doctorat d'Université
Établissement de soutenance :
Université de Poitiers
UFR, institut ou école :
UFR des sciences fondamentales et appliquées (SFA)
Laboratoire :
Laboratoire de mathématiques et applications - LMA (Poitiers)
Domaine de recherche :
Mathématiques
Directeur(s) de thèse :
Alain Miranville, Laurence Cherfils
Date de soutenance :
07 décembre 2018
Président du jury :
Jean-Paul Chehab
Rapporteurs :
François Jauberteau, Stefania Gatti
Membres du jury :
Alain Miranville, Laurence Cherfils, Madalina Petcu

  • Tweeter
  • Partager
 

Menu :

  • Rechercher par...

    • Années de soutenance
    • Auteurs
    • Directeurs de thèse
    • Écoles doctorales
    • Secteurs de recherche
    • Sections CNU
    • UFR, instituts et Écoles
    • Recherche ciblée
  • À propos d'UPthèses

    • Présentation
    • Mode d'emploi
    • Contacts
  • Voir aussi

    • theses.fr
    • Bibliothèques de l'UP
    • Sudoc

Annexe :

  • Une question ?

    Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales