• ENT
  • Intranet
  • Portail étudiant
  • Portail université

Outils accessibilité :

  • Accessibilité |
  • Aller au contenu |
  • Aller au menu
 

UPThèses

Recherche

Moubtahij Redouane El

Transformations polynomiales, applications à l'estimation de mouvements et la classification

frDépôt légal électronique

Consulter le texte intégral de la thèse (format PDF)  

Couverture du document

Index

École doctorale :

  • S2IM - Sciences et ingénierie pour l'information, mathématiques

UFR ou institut :

  • UFR des sciences fondamentales et appliquées (SFA)

Secteur de recherche :

  • Traitement du signal et des images

Section CNU :

  • Génie informatique, automatique et traitement du signal

Résumé

  • Français
  • English
 

Français

Transformations polynomiales, applications à l'estimation de mouvements et la classification

Ces travaux de recherche concernent la modélisation de l'information dynamique fonctionnelle fournie par les champs de déplacements apparents à l'aide de base de polynômes orthogonaux. Leur objectif est de modéliser le mouvement et la texture extraites afin de l'exploiter dans les domaines de l'analyse et de la reconnaissance automatique d'images et de vidéos. Nous nous intéressons aussi bien aux mouvements humains qu'aux textures dynamiques. Les bases de polynômes orthogonales ont été étudiées. Cette approche est particulièrement intéressante car elle offre une décomposition en multi-résolution et aussi en multi-échelle. La première contribution de cette thèse est la définition d'une méthode spatiale de décomposition d'image : l'image est projetée et reconstruite partiellement avec un choix approprié du degré d'anisotropie associé à l'équation de décomposition basée sur des transformations polynomiales. Cette approche spatiale est étendue en trois dimensions afin d'extraire la texture dynamique dans des vidéos. Notre deuxième contribution consiste à utiliser les séquences d'images qui représentent les parties géométriques comme images initiales pour extraire les flots optiques couleurs. Deux descripteurs d'action, spatial et spatio-temporel, fondés sur la combinaison des informations du mouvement/texture sont alors extraits. Il est ainsi possible de définir un système permettant de reconnaître une action complexe (composée d'une suite de champs de déplacement et de textures polynomiales) dans une vidéo.

Mots-clés libres : Traitement de l'image et vision par ordinateur, base polynomiale complète, décomposition de l'image couleur, analyse de la vidéo, reconnaissance d'objet.

    Rameau (langage normalisé) :
  • Traitement d'images -- Techniques numériques
  • Vision par ordinateur
  • Reconnaissance des formes (informatique)

English

Polynomial transformations, applications to motion estimation and classification

The research relies on modeling the dynamic functional information from the fields of apparent movement using basic orthogonal polynomials. The goal is to model the movement and texture extracted for automatic analysis and recognition of images and videos. We are interested both in human movements as dynamic textures. Orthogonal polynomials bases were studied. This approach is particularly interesting because it offers a multi-resolution and a multi-scale decomposition. The first contribution of this thesis is the definition of method of image spatial decomposition: the image is projected and partially rebuilt with an appropriate choice of the degree of anisotropy associated with the decomposition equation based on polynomial transformations. This spatial approach is extended into three dimensions to retrieve the dynamic texture in videos. Our second contribution is to use image sequences that represent the geometric parts as initial images to extract color optical flow. Two descriptors of action, spatial and space-time, based on the combination of information of motion / texture are extracted. It is thus possible to define a system to recognize a complex action (composed of a series of fields of motion and polynomial texture) in a video.

Keywords : Image processing and computer vision, complete polynomial basis, color image decomposition, video analysis, object recognition, feature representation.

Notice

Diplôme :
Doctorat d'Université
Établissement de soutenance :
Université de Poitiers
Établissement de co-tutelle :
Université Sidi Mohamed ben Abdellah (Fès, Maroc)
UFR, institut ou école :
UFR des sciences fondamentales et appliquées (SFA)
Laboratoire :
XLIM-SIC
Domaine de recherche :
Traitement du signal et des images
Directeur(s) de thèse :
Christine Fernandez-Maloigne, Hamid Tairi, Bertrand Augereau
Date de soutenance :
11 juin 2016
Président du jury :
Hassan Qjidaa
Rapporteurs :
Djamal Merad, Rachid Oulad Haj Thami, Khalid Satori
Membres du jury :
Christine Fernandez-Maloigne, Hamid Tairi, Bertrand Augereau, Benaissa Bellach

  • Tweeter
  • Partager
 

Menu :

  • Rechercher par...

    • Années de soutenance
    • Auteurs
    • Directeurs de thèse
    • Écoles doctorales
    • Secteurs de recherche
    • Sections CNU
    • UFR, instituts et Écoles
    • Recherche ciblée
  • À propos d'UPthèses

    • Présentation
    • Mode d'emploi
    • Contacts
  • Voir aussi

    • theses.fr
    • Bibliothèques de l'UP
    • Sudoc

Annexe :

  • Une question ?

    Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales