• ENT
  • Intranet
  • Portail étudiant
  • Portail université

Outils accessibilité :

  • Accessibilité |
  • Aller au contenu |
  • Aller au menu
 

UPThèses

Recherche

Fakih Hussein

Étude mathématique et numérique de quelques généralisations de l'équation de Cahn-Hilliard : applications à la retouche d'images et à la biologie

frDépôt légal électronique

Consulter le texte intégral de la thèse (format PDF)  

Couverture du document

Index

École doctorale :

  • S2IM - Sciences et ingénierie pour l'information, mathématiques

UFR ou institut :

  • UFR des sciences fondamentales et appliquées (SFA)

Secteur de recherche :

  • Mathématiques et leurs interactions

Section CNU :

  • Mathématiques appliquées et applications

Résumé

  • Français
  • English
 

Français

Étude mathématique et numérique de quelques généralisations de l'équation de Cahn-Hilliard : applications à la retouche d'images et à la biologie

Cette thèse se situe dans le cadre de l'analyse théorique et numérique de quelques généralisations de l'équation de Cahn-Hilliard. On étudie l'existence, l'unicité et la régularité de la solution de ces modèles ainsi que son comportement asymptotique en terme d'existence d'un attracteur global de dimension fractale finie. La première partie de la thèse concerne des modèles appliqués à la retouche d'images. D'abord, on étudie la dynamique de l'équation de Bertozzi-Esedoglu-Gillette-Cahn-Hilliard avec des conditions de type Neumann sur le bord et une nonlinéarité régulière de type polynomial et on propose un schéma numérique avec une méthode de seuil efficace pour le problème de la retouche et très rapide en terme de temps de convergence. Ensuite, on étudie ce modèle avec des conditions de type Neumann sur le bord et une nonlinéarité singulière de type logarithmique et on donne des simulations numériques avec seuil qui confirment que les résultats obtenus avec une nonlinéarité de type logarithmique sont meilleurs que ceux obtenus avec une nonlinéarité de type polynomial. Finalement, on propose un modèle basé sur le système de Cahn-Hilliard pour la retouche d'images colorées. La deuxième partie de la thèse est consacrée à des applications en biologie et en chimie. On étudie la convergence de la solution d'une généralisation de l'équation de Cahn-Hilliard avec un terme de prolifération, associée à des conditions aux limites de type Neumann et une nonlinéarité régulière. Dans ce cas, on démontre que soit la solution explose en temps fini soit elle existe globalement en temps. Par ailleurs, on donne des simulations numériques qui confirment les résultats théoriques obtenus. On termine par l'étude de l'équation de Cahn-Hilliard avec un terme source et une nonlinéarité régulière. Dans cette étude, on considère le modèle à la fois avec des conditions aux limites de type Neumann et de type Dirichlet.

Mots-clés libres : Équation de Cahn-Hilliard, retouche d'images, croissance tumorale, problème bien posé, explosion en temps fini, attracteur global, attracteur exponentiel, simulations.

    Rameau (langage normalisé) :
  • Équations de Cahn-Hilliard
  • Cellules cancéreuses -- Croissance -- Modèles mathématiques
  • Reconstruction d'image

English

Mathematics and numerical study of some variants of the Cahn-Hilliard equation: applications in image inpainting and in biology

This thesis is situated in the context of the theoretical and numerical analysis of some generalizations of the Cahn-Hilliard equation. We study the well-possedness of these models, as well as the asymptotic behavior in terms of the existence of finite-dimenstional (in the sense of the fractal dimension) attractors. The first part of this thesis is devoted to some models which, in particular, have applications in image inpainting. We start by the study of the dynamics of the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with Neumann boundary conditions and a regular nonlinearity. We give numerical simulations with a fast numerical scheme with threshold which is sufficient to obtain good inpainting results. Furthermore, we study this model with Neumann boundary conditions and a logarithmic nonlinearity and we also give numerical simulations which confirm that the results obtained with a logarithmic nonlinearity are better than the ones obtained with a polynomial nonlinearity. Finally, we propose a model based on the Cahn-Hilliard system which has applications in color image inpainting. The second part of this thesis is devoted to some models which, in particular, have applications in biology and chemistry. We study the convergence of the solution of a Cahn-Hilliard equation with a proliferation term and associated with Neumann boundary conditions and a regular nonlinearity. In that case, we prove that the solutions blow up in finite time or exist globally in time. Furthermore, we give numericial simulations which confirm the theoritical results. We end with the study of the Cahn-Hilliard equation with a mass source and a regular nonlinearity. In this study, we consider both Neumann and Dirichlet boundary conditions.

Keywords : Cahn-Hilliard equation, image inpainting, tumor growth, well-possedness, blow up, global attractor, exponential attractor, simulations.

Notice

Diplôme :
Doctorat d'Université
Établissement de soutenance :
Université de Poitiers
UFR, institut ou école :
UFR des sciences fondamentales et appliquées (SFA)
Laboratoire :
Laboratoire de mathématiques et applications - LMA (Poitiers)
Domaine de recherche :
Mathématiques et leur interactions
Directeur(s) de thèse :
Alain Miranville, Laurence Cherfils
Date de soutenance :
02 octobre 2015
Président du jury :
Danielle Hilhorst
Rapporteurs :
Maurizio Grasselli, Andrea L. Bertozzi
Membres du jury :
Alain Miranville, Laurence Cherfils, Morgan Pierre, Jean-Paul Chehab, Zakaria Belhachmi

  • Tweeter
  • Partager
 

Menu :

  • Rechercher par...

    • Années de soutenance
    • Auteurs
    • Directeurs de thèse
    • Écoles doctorales
    • Secteurs de recherche
    • Sections CNU
    • UFR, instituts et Écoles
    • Recherche ciblée
  • À propos d'UPthèses

    • Présentation
    • Mode d'emploi
    • Contacts
  • Voir aussi

    • theses.fr
    • Bibliothèques de l'UP
    • Sudoc

Annexe :

  • Une question ?

    Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales