• ENT
  • Intranet
  • Portail étudiant
  • Portail université

Outils accessibilité :

  • Accessibilité |
  • Aller au contenu |
  • Aller au menu
 

UPThèses

Recherche

Dupas Alexandre

Opérations et algorithmes pour la segmentation topologique d'images 3D

fr

Consulter le texte intégral de la thèse (format PDF)  

Couverture du document

Index

École doctorale :

  • S2IM - Sciences et ingénierie pour l'information, mathématiques

UFR ou institut :

  • UFR des sciences fondamentales et appliquées (SFA)

Secteur de recherche :

  • Informatique et applications

Section CNU :

  • Informatique

Résumé

  • Français
  • English
 

Français

Opérations et algorithmes pour la segmentation topologique d'images 3D

Une carte topologique 3D est un modèle servant à représenter la partition en régions d'une image 3D pour le traitement d'images. Dans ce travail, nous développons des outils permettant de modifier la partition représentée par une carte topologique, puis nous utilisons ces outils afin de proposer des algorithmes de segmentation intégrant des critères topologiques. Dans une première partie, nous proposons trois opérations. La fusion de régions est définie avec une approche locale adaptée à une utilisation interactive et une approche globale pour une utilisation automatisée comme lors d'une segmentation. La division de régions est proposée avec une méthode d'éclatement en voxels et la division à l'aide d'un guide. Enfin, la déformation de la partition est basée sur la définition de points ML-Simples : des voxels pouvant changer de région sans modifier la topologie de la partition. À l'aide de ces opérations, nous mettons en oeuvre dans une seconde partie des algorithmes de segmentation d'images utilisant les cartes topologiques. Notre première approche adapte au modèle des cartes topologiques un algorithme existant qui utilise un critère basé sur la notion de contraste. Nous proposons ensuite des méthodes de calcul d'invariants topologiques sur les régions : les nombres de Betti. Grâce à eux, nous développons un critère topologique de segmentation permettant de contrôler le nombre de tunnels et de cavités des régions. Enfin, nous illustrons les possibilités de tous nos outils en mettant en place une chaîne de traitement pour la segmentation de tumeurs cérébrales dans des images médicales.

Mots-clés libres : Modèles topologiques, Cartes combinatoires, Traitement d’images, Imagerie médicale, Nombres de Betti, Segmentation, Points simples, Modèles déformables.

    Rameau (langage normalisé) :
  • Traitement d'images -- Techniques numériques
  • Imagerie tridimensionnelle en médecine
  • Topologie de basse dimension
  • Algorithmes

English

Operations and algorithms for the topological segmentation of 3D images

A 3D topological map is a model used in image processing which represents the partition of a 3D image into regions. In this work, we introduce some tools that allow to modify a partition presented by a topological map, and we use these tools to propose segmentation algorithms implementing topological criteria. In a first part, we propose three operations. The region merging is defined with a local approach suited for interactive use, and a global approach suited for automatic processing like image segmentation. The region splitting is introduced with a burst into voxel approach, and the split with a guide. Last, a deformation of the partition based on the definition of ML-Simple points: voxels that can be flipped of region without changing the topology of the partition. With these operations, we implement in a second part image segmentation processes using topological maps. First we adapt to our model an existing algorithm using a criterion based on the notion of contrast. Then, we propose methods to compute topological invariants of regions: the Betti numbers. Using these methods we implement a topological criterion that controls the number of tunnels and cavities of the regions. Last, we give an overview of the possibilities of our tools by creating a toolchain to segment brain tumors in medical images.

Keywords : Topological model, Combinatorial map, Image processing, 3D medical imaging, Betti numbers, Segmentation, Simple points, Deformable model.

Notice

Diplôme :
Doctorat d'Université
Établissement de soutenance :
Université de Poitiers
UFR, institut ou école :
UFR des sciences fondamentales et appliquées (SFA)
Laboratoire :
XLIM-SIC
Domaine de recherche :
Informatique et applications
Directeur(s) de thèse :
Guillaume Damiand, Pascal Lienhardt
Date de soutenance :
25 novembre 2009
Président du jury :
Achille Braquelaire
Rapporteurs :
Annick Montanvert, Michel Couprie
Membres du jury :
Guillaume Damiand, Pascal Lienhardt, Yves Bertrand

  • Tweeter
  • Partager
 

Menu :

  • Rechercher par...

    • Années de soutenance
    • Auteurs
    • Directeurs de thèse
    • Écoles doctorales
    • Secteurs de recherche
    • Sections CNU
    • UFR, instituts et Écoles
    • Recherche ciblée
  • À propos d'UPthèses

    • Présentation
    • Mode d'emploi
    • Contacts
  • Voir aussi

    • theses.fr
    • Bibliothèques de l'UP
    • Sudoc

Annexe :

  • Une question ?

    Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous :


    ou par messagerie électronique 7j/7 - 24h/24h, une réponse vous sera adressée sous 48h.
    Accédez au formulaire...
 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales