Vous êtes ici : Accueil > Secteurs de recherche > Mathématiques et leurs interactions

Mathématiques et leurs interactions

Les thèses se rapportant au secteur de recherche "Mathématiques et leurs interactions"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
37 ressources ont été trouvées. Voici les résultats 11 à 20
Tri :   Date Auteur Titre thèses par page
  • Développement d'un outil statistique pour évaluer les charges maximales subies par l'isolation d'une cuve de méthanier au cours de sa période d'exploitation    - Fillon Blandine  -  19 décembre 2014

    Voir le résumé
    Voir le résumé
    Ce travail de thèse porte sur les outils statistiques pour l'évaluation des maxima de charges de sloshing dans les cuves de méthaniers. Selon les caractéristiques du navire, son chargement et les conditions de navigation, un ballotement hydrodynamique est observé à l'intérieur des cuves, phénomène communément appelé sloshing. La détermination des charges qui s'appliquent à la structure est basée sur des mesures de pression d'impact au moyen d'essais sur maquette. Les maxima de pression par impact, extraits des mesures, sont étudiés. La durée d'un essai est équivalente à 5 heures au réel et insuffisante pour déterminer des maxima de pression associés à de grandes périodes de retour (40 ans). Un modèle probabiliste est nécessaire pour extrapoler les maxima de pression. Le modèle usuel est une loi de Weibull. Comme ce sont les valeurs extrêmes des échantillons qui nous intéressent, les ajustements sont aussi effectués par les lois des valeurs extrêmes et de Pareto généralisées via les méthodes de maximum par bloc et d'excès au-dessus d'un seuil. L'originalité du travail repose sur l'emploi d'un système alternatif, plus pertinent pour la capture des maxima de pression et d'une quantité de 480 heures de mesures disponible pour les mêmes conditions d'essai. Cela fournit une distribution de référence pour les maxima de pression et nous permet d'évaluer la pertinence des modèles sélectionnés. Nous insistons sur l'importance d'évaluer la qualité des ajustements par des tests statistiques et de quantifier les incertitudes sur les estimations obtenues. La méthodologie fournie a été implémentée dans un logiciel nommé Stat_R qui facilite la manipulation et le traitement des résultats.

  • Étude asymptotique de modèles en transition de phase    - Wehbe Charbel  -  05 décembre 2014

    Voir le résumé
    Voir le résumé
    Ce rapport de thèse est consacré à l'étude de modèles de champ de phase de type Caginalp. Nous considérons ici, deux parties : la première étant une généralisation du modèle de champ de phase de Caginalp basée sur la loi de Maxwell-Cattaneo et la seconde traite le même modèle dans sa version conservative. L'étude dans les deux parties est faite dans un domaine borné. De plus, dans la première partie on distingue les cas de conditions aux bords de type Dirichlet ainsi que Neumann, tandis que dans la deuxième partie le modèle est étudié uniquement avec les conditions Dirichlet (avec un potentiel régulier puis un potentiel singulier). Tout d'abord, l'existence, l'unicité, et la régularité des solutions sont analysées aux moyens d'arguments classiques. Ensuite, l'existence d'ensembles bornés absorbants est établie. Enfin, dans certains cas, l'existence de l'attracteur global et d'attracteurs exponentiels sont analysés.

  • Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs    - Tête Claire  -  21 octobre 2014

    Voir le résumé
    Voir le résumé
    Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper aux idéaux premiers et ceci afin de manier des objets élémentaires et explicites. Parmi ces objets, figurent les complexes algébriques de Koszul et de Cech dont nous étudions les propriétés cohomologiques grâce à des résultats simples portant sur la cohomologie du totalisé d'un bicomplexe. Dans le cadre de la cohomologie de Cech, nous avons établi la longue suite exacte de Mayer-Vietoris avec un traitement reposant uniquement sur le maniement des éléments. Une autre notion importante est celle de dimension de Krull. Sa caractérisation en termes de monoïdes bords permet de montrer de manière expéditive le théorème d'annulation de Grothendieck en cohomologie de Cech. Nous fournissons également un algorithme permettant de compléter un polynôme homogène en un h.s.o.p.. La profondeur est intimement liée à la théorie des résolutions libres/projectives finies, en témoigne le théorème de Ferrand-Vasconcelos dont nous rapportons une généralisation due à Jouanolou. Par ailleurs, nous revenons sur des résultats faisant intervenir la profondeur des idéaux caractéristiques d'une résolution libre finie. Nous revisitons, dans un cas particulier, une construction due à Tate permettant d'expliciter une résolution projective totalement effective de l'idéal d'un point lisse d'une hypersurface. Enfin, nous abordons la théorie de la régularité en dimension 1 via l'étude des idéaux inversibles et fournissons un algorithme implémenté en Magma calculant l'anneau des entiers d'un corps de nombres.

  • Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N)    - Rajhi Anis  -  01 octobre 2014

    Voir le résumé
    Voir le résumé
    Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe GL(2) sur un corps p-adique. Plus précisément, on a construit une tour projective d'espaces fibrés au-dessus du 1-squelette de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. On a montré que toute représentation cuspidale π de GL(n) se plonge avec multiplicité 1 dans le premier espace de cohomologie à support compact du k-ième étage de la tour, où k est le conducteur de π. Dans la deuxième partie on a construit un espace W au-dessus de la subdivision barycentrique de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. Pour étudier les espaces de cohomologie à support compact d'un G-complexe simplicial propre X muni d'un recouvrement équivariant assez particulier, où G est un groupe localement compact totalement discontinu, on a montré l'existence d'une suite spactrale dans la catégorie des représentations lisses de G qui converge vers la cohomologie à support compact de X. En s'appuyant sur ce dernier résultat, on a calculé la cohomologie à support compact de l'espace W comme représentation lisse de GL(n) puis on a montrer que les types cuspidaux de niveau 0 de GL(n) apparaissent avec multiplicité fini dans la cohomologie de certain complexes fini construit au niveau résiduel. Comme conséquence, on montre que les représentations cuspidales de niveau 0 de GL(n) apparaissent dans la cohomologie de W.

  • Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3    - Comparin Paola  -  26 septembre 2014

    Voir le résumé
    Voir le résumé
    Une surface K3 est une surface X complexe compacte projective lisse qui a fibré canonique trivial et h0;1(X) = 0. Dans cette thèse on s'intéresse à deux problèmes pour ces surfaces. D'abord on considère des surfaces K3 obtenues comme recouvrement double de P2 ramifié le long d'une sextique. On classifie les fibrations elliptiques sur ces surfaces et leur groupe de Mordell-Weil, c'est-à-dire le groupe des sections. Vu que une section de 2-torsion définit une involution de la surface (dite involution de van Geemen-Sarti), alors en classifiant les fibrations et les section de 2-torsion on obtient une classification complète des involutions de van Geemen-Sarti sur ce type de surfaces K3. On montre aussi comment calculer l'équation de la fibration et on étudie le quotient par l'involution de van Geemen-Sarti. Ensuite on montre la construction de Berglund-Hübsch-Chiodo-Ruan (BHCR): il s'agit d'une construction miroir qui part d'un polynôme dans un espace projectif à poids et d'un groupe d'automorphismes (avec certaines propriétés) et qui donne, en toute dimension, des paires de variétés Calabi-Yau. Ces deux variétés sont l'une miroir de l'autre en sense classique. On classifie toutes les paires de surfaces K3 obtenues avec cette construction qui aient en plus un automorphisme non{symplectique d'ordre premier p > 3. Pour les surfaces K3 une autre notion de symétrie miroir a été introduite par Dolgachev et Nikulin : la symétrie pour K3 polarisées (LPK3). On montre dans la thèse comment polariser les surfaces obtenues avec la construction BHCR et on preuve que deux surfaces miroir au sense BHCR, dûment polarisées, appartiennent à deux familles miroir LPK3.

  • Étude des restrictions des séries discrètes de certains groupes résolubles et algébriques    - Kouki Sami  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit G un groupe de Lie résoluble connexe et H un de ses sous-groupes fermés connexes d'algèbres de Lie g et h respectivement. On note g* (resp. h*) le dual linéaire de g (resp. h) ). Le sujet de ma thèse consiste à étudier la restriction d'une série discrète π de G, associée à une orbite coadjointe Ω C g*, à H. Si la restriction de π à H se décompose en somme directe de représentations de H avec multiplicités finies, on dit que π est H-admissible. Notons Pg,n : Ω → h* l'application restriction. Il s'agit de démontrer la conjecture suivante due à Michel Duflo : 1. La représentation π est H-admissible si et seulement si l'application moment Pg,n est propre sur l'image. 2. Si π est H-admissible, et si T est une série discrète de H alors sa multiplicité dans la restriction de π à H doit pouvoir se calculer en « quantifiant » l'espace réduit correspondant (qui est compact dans ce cas). Dans cette thèse, nous apportons une réponse positive à cette conjecture dans deux situations, à savoir : (i) Le groupe G est résoluble exponentiel. (ii) Le groupe G est le produit semi direct d'un tore compact par le groupe de Heisenberg et H est un sous-groupe algébrique connexe.

  • Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple    - Ammari Kais  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit K un corps algébriquement clos de caractéristique nulle. Il est bien connu, d'après un résultat de Duflo, Khalgui et Torasso, qu'une algèbre de Lie algébrique quasi-réductive (définie sur K) est stable. La réciproque est fausse en général. Se pose la question de savoir, si pour certaines classes particulières d'algèbres de Lie non réductives, il y a équivalence entre ces deux notions. Plus généralement, les sous-algèbres biparaboliques forment une classe très intéressante (incluant la classe des sous-algèbres paraboliques et de Levi) d'algèbres de Lie qui ne sont pas toutes réductives. Panyushev conjecture que si une sous-algèbre biparabolique est stable, alors son stabilisateur générique est un tore. Cette conjecture peut être reformulée ainsi : une sous-algèbre de Lie biparabolique est stable si et seulement si elle est quasi-réductive. Compte tenu des résultats obtenus par ce dernier pour le cas des sous-algèbres paraboliques d'une algèbre de Lie simple de type A et C, on donne dans cette thèse une réponse positive à cette conjecture pour la classe des sous-algèbres paraboliques d'une algèbre de Lie simple. Au passage, nous montrons également qu'une sous-algèbre de Lie de gl(n, K) qui stabilise une forme bilinéaire alternée de rang maximal et un drapeau en position générique est stable si et seulement si elle est quasi-réductive.

  • Paires admissibles d'une algèbre de Lie simple complexe et W-algèbres finies    - Sadaka Guilnard  -  06 décembre 2013

    Voir le résumé
    Voir le résumé
    Soient g une algèbre de Lie simple complexe et e un élément nilpotent de g. Nous nous intéressons dans ce mémoire à la question (soulevée par Premet) d'isomorphisme entre les W-algèbres finies construites à partir de certaines sous-algèbres nilpotentes de g dites e-admissibles. Nous introduisons les notions de paire et graduation e-admissibles. Nous montrons ensuite que la W-algèbre associée à une paire e-admissible possède des propriétés similaires à celle introduite par Gan et Ginzburg. De plus, nous définissons une relation d'équivalence sur l'ensemble des paires admissibles. Nous montrons alors que si deux paires sont équivalentes, alors les W-algèbres associées sont isomorphes. Nous introduisons enfin les notions de graduation et paire admissibles b-maximales et nous montrons que les paires admissibles b-maximales sont équivalentes entre elles. Comme conséquence de ce résultat, nous retrouvons un résultat de Brundan et Goodwin sur les bonnes graduations. Dans une dernière partie, nous considérons des cas particuliers pour lesquels nous pouvons apporter une réponse complète à la question d'isomorphisme.

  • Comportement asymptotique de modèles en séparation de phases    - Israel Haydi  -  05 décembre 2013

    Voir le résumé
    Voir le résumé
    Dans cette thèse, on étudie l'existence, l'unicité et la régularité des solutions d'équation de type Cahn-Hilliard ainsi que son comportement asymptotique en termes d'existence de l'attracteur global et d'un attracteur exponentiel. Cette équation est considérée dans un domaine borné et régulier pour différents types de nonlinéarités et de conditions au bord. D'abord, on étudie l'équation avec des conditions de type Dirichlet sur le bord et une nonlinéarité régulière. Après, on considère une perturbation du problème et on démontre l'existence d'une famille robuste d'attracteurs exponentiels lorsque ε tend vers 0. Ensuite, on étudie l'équation avec des conditions dynamiques sur le bord. On considère tout d'abord une nonlinéarité régulière et on donne une étude théorique et numérique. Après, on illustre ces résultats par des simulations numériques en dimension deux d'espace qui permettent d'étudier l'influence des différents paramètres. On termine par une étude du modèle considéré avec une nonlinéarité singulière que l'on approche par des fonctions régulières et on introduit une notion de solution appropriée.

  • Étude de la dynamique symbolique des développements en base négative, système de Lyndon    - Nguema Ndong Florent  -  26 septembre 2013

    Voir le résumé
    Voir le résumé
    Ce travail est consacré à l'étude de systèmes de Lyndon (pour la relation d'ordre alterné) et à la dynamique symbolique des développements des nombres en base négative. Pour un réel ß > 1 fixé, nous construisons un code préfixe récurrent positif permettant non seulement de montrer l'intrinsèque ergodicité du —ß-shift mais aussi de déterminer la fonction zêta qui lui est associée. Nous étudions les conditions pour lesquelles le —ß-shift possède la spécification. En outre, lorsque ß est strictement plus petit que le nombre d'or, le langage du —ß-shift admet des mots intransitifs. Cet état de fait engendre dans le système dynamique des cylindres négligeables par rapport à la mesure d'entropie maximale. Ces cylindres génèrent sur Iß=[—ß/(ß+1),1/(ß+1)[ de petits intervalles de mesure nulle (la mesure considérée étant l'unique mesure ergodique sur Iß). Nous en faisons une étude détaillée, en particulier nous déterminons ces intervalles "trous". Par ailleurs, nous étudions l'unicité des systèmes de numération des entiers relatifs en base négative et nous montrons qu'à chaque mot de Lyndon correspond un tel système.

|< << 1 2 3 4 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales