Vous êtes ici : Accueil > Sections CNU > Section 31 - Chimie théorique, physique, analytique

Section 31 - Chimie théorique, physique, analytique

Les thèses se rapportant à la section CNU "Section 31 - Chimie théorique, physique, analytique"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
42 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Synthèse et caractérisation de matériaux électrocatalytiques : activation anodique de l'eau dans un électrolyseur PEM    - Audichon Thomas  -  13 novembre 2014

    Voir le résumé
    Voir le résumé
    Le dihydrogène se présente comme un vecteur énergétique d'avenir pour la diversification des sources de production d'énergie. L'électrolyse de l'eau dans le système PEMWE (Proton Exchange Membrane Water Electrolyzer) permet l'obtention de dihydrogène de grande pureté. Les atouts de cette technologie induite par l'utilisation d'assemblage membrane électrode (AME) permettent son couplage aux énergies renouvelables. Toutefois, l'amélioration de l'activité catalytique des matériaux anodiques et leur stabilité pour baisser la tension de cellule et la diminution de la teneur en métaux nobles dans la composition des matériaux sont nécessaires. Lors de ces travaux de thèse, une voie de synthèse a été élaborée pour préparer des nanomatériaux à base de ruthénium. L'ajout d'iridium a permis dans un premier temps de prévenir l'oxyde de ruthénium de la dissolution tout en maintenant l'activité du catalyseur initial. Les meilleures performances catalytiques des AMEs en termes de densité de courant, de tension de cellule et de durabilité ont été délivrées avec les matériaux anodiques dont la composition molaire en Ru est supérieure à 70 %. La substitution partielle des métaux précieux (Ru et Ir) par du cérium et du niobium dans le but de proposer des catalyseurs à moindre coût a été aussi réalisée. Contrairement au niobium qui apporte une phase amorphe dans la structure du matériau, le cérium jusqu'à une teneur de 10 % permet de conserver les performances de l'anode telles que obtenues dans le matériau bimétallique. Le cérium se présente donc comme un métal prometteur à intégrer de manière appropriée dans la composition des matériaux anodiques.

  • Oxydation du méthane à basse et haute température, application de procédés plasma et/ou catalyse    - Baylet Alexandre  -  26 septembre 2008

    Voir le résumé
    Voir le résumé
    Les travaux de recherche de cette thèse concernent les problèmes liés à l'oxydation du CH4, gaz à effet de serre notoire provenant dans le cas présent du transport routier, et plus précisément l'élimination du CH4 issu des gaz d'échappement des moteurs de type Diesel. L'oxydation totale du CH4 a été étudiée : - A basse température par procédé Plasma/Catalyse : de tous les systèmes testés, la combinaison d'un système plasma froid de type DBD coaxial associé à un catalyseur Pd/Al2O3 en position POSTplasma permet l'oxydation de 30 % du CH4 avec une énergie déposée de 225 J.L-1 (Q=600 mL.min-1, N2/O2/CO2/H2O/0,5%CH4, T=250 °C, H=150 mm) tout en minimisant la production de O3 et en ne générant pas de NOx. Cependant, les puissances consommées (> kW) sont trop importantes pour une éventuelle application sur véhicules. - A basse température sur catalyseurs Pd/Al2O3 (température de light-off) : L'étape de ré-oxydation de Pd° est plus rapide sur des petites particules mais l'activation du CH4 y est plus difficile en raison d'une stabilisation plus importante des petites particules de PdO par le support. Une série de pulses réducteurs (CH4 ou C3H6) en conditions isothermes permet d'activer le catalyseur et d'atteindre un maximum de conversion. - A haute température sur catalyseurs Pd/(oxyde modifié) (pics haute température) : la synthèse d'une alumine dopée (La, Sr, Ba, Mn) avec une surface spécifique de l'ordre de 50 m2.g-1 permet d'atteindre des taux de conversion de 90 % du CH4 à 700 °C tout en maintenant une excellente stabilité thermique. Un mécanisme redox de type Mars et van-Krevelen, avec transfert de l'oxygène du support vers les particules de palladium est proposé pour expliquer les différences en termes d'activité catalytique et de stabilité thermique en comparaison au catalyseur de référence Pd/Al2O3.

  • Oxydation catalytique de divers composés organiques volatils (COV) à l'aide de catalyseurs zéolithiques    - Beauchet Romain  -  10 décembre 2008

    Voir le résumé
    Voir le résumé
    L'objectif de cette étude a été de mettre au point des catalyseurs actifs, sélectifs (en formation de CO2 et d'H2O) et stables pour la destruction de mélanges binaires de Composés Organiques Volatils (COV). L'oxydation est menée dans des conditions proches de celle de l'industrie sur des catalyseurs à base de zéolithe, Pt/zéolithe mais également sur d'autres oxydes tels que MgO et CeO2. Dans un premier temps, l'oxydation a été mise en oeuvre indépendamment sur deux molécules représentatives des deux plus grandes familles de COV : l'isopropanol et l'o-xylène. Par la suite, la destruction de l'isopropanol et de l'o-xylène a été étudiée en mélange. Ce travail a principalement porté sur l'étude des mécanismes de destruction des COV et de formation des produits secondaires, sur les compétitions d'adsorption des COV en mélanges induisant des effets promoteurs ou inhibiteurs sur la destruction mais également sur la compréhension du mode de fonctionnement des catalyseurs (structure, acido-basicité). Parallèlement, un phénomène d'activation des transformations de l'o-xylène et du cumène ainsi que sur les rendements en CO2 au cours du temps a été mis en évidence sur NaX. Cette augmentation de l'activité semble être due à la formation de composés organiques oxygénés appelés " coke actif " et capable de catalyser les réactions d'oxydation.

  • Synthesis and characterization of nanoparticles for ethanol oxidation in direct ethanol fuel cell (DEFC)    - Beyhan Seden  -  10 mai 2010

    Voir le résumé
    Voir le résumé
    Les piles à combustible à membrane échangeuse de protons à oxydation directe de l'éthanol (DEFC, Direct Ethanol Fuel Cell) sont une technologie prometteuse pour les applications de faible puissance au regard de la grande densité d'énergie contenue dans ce combustible, de la faible température de fonctionnement, de la non toxicité et de la disponibilité de ce composé. Cependant, quelques problèmes sont à surmonter si nous souhaitons voir émerger cette technologie pour le grand public. Pour le catalyseur situé à l'anode, deux inconvénients majeurs posent problème avec les DEFCs, à savoir le coût des métaux nobles utilisés à fort taux de charge et la stabilité du catalyseur sur le long terme. De plus, un catalyseur anodique actif doit pouvoir rompre la liaison carbone-carbone afin d'obtenir un rendement maximal. Actuellement, le meilleur catalyseur bimétallique est l'association PtSn; cependant, l'addition d'étain au platine inhibe la rupture de la liaison C-C. Ceci n'est pas favorable quant à une utilisation pour les piles à combustible et, de plus, un accroissement de la stabilité de ce type de catalyseur est requis. Aussi, le catalyseur tri-métallique PtSnRu semble prometteur pour une utilisation dans les DEFCs mais un catalyseur tri-métallique alternatif d'un moindre coût est nécessaire. Ainsi, un catalyseur tri-métallique présentant une forte activité et une grande stabilité ainsi qu'une proportion plus faible de métaux nobles doit être développé pour dépasser les limitations actuelles. Le cœur de ce projet de thèse a été de développer de nouveaux catalyseurs anodiques permettant de donner un aperçu de la manière dont ces problèmes et limitations peuvent être surmontés. Afin de réaliser cela, de nombreux catalyseurs bimétalliques à base de platine et tri-métalliques ont été synthétisés par différentes méthodes afin de préparer le meilleur catalyseur possible. Il a été vu que la méthode de synthèse choisie pour préparer le catalyseur joue un rôle crucial sur les performances catalytiques mesurées. Les catalyseurs préparés via le " précurseur colloïdal de Bönneman " ont permis de déterminer la procédure la plus efficace pour le développement de catalyseurs hautement actifs pour l'oxydation de l'éthanol dans les DEFCs. Un système ternaire basé sur l'association PtSn a été envisagé avec une réduction de la fraction de métaux. Pour cela, des métaux de transition tels que Ni ou Co ont été incorporés dans les matériaux étudiés. D'autre part, l'addition d'autres métaux nobles (Rh et Pd) au couple PtSn a également été étudiée car un plus grand rendement était attendu. Les résultats de ce manuscrit montrent que les catalyseurs supportés sur carbone Pt80Sn10Ni10 et Pt80Sn10Co10 présentent des densités de courant importantes ainsi que des potentiels d'initiation de l'oxydation faibles, ce qui en fait les catalyseurs les plus prometteurs de l'ensemble de ceux qui ont été synthétisés. Les caractérisations physiques de ces catalyseurs révèlent de plus faibles niveaux d'énergies de la couche d des atomes de platine de surface ainsi qu'une plus faible énergie de la liaison Pt-CO. Aussi, la présence de SnO2 de manière isolée dans ces catalyseurs pourrait permettre une meilleure oxydation des intermédiaires réactionnels carbonylés. Avec une telle formulation de catalyseur, de plus grandes performances ont été obtenues lors de test en pile avec une quantité inférieure de métaux nobles.

  • Optimisation de la synthèse de matériaux poreux de haute surface, composés d'oxydes simples (SiO2, TiO2, Al2O3) et d'oxydes mixtes (perovskites), pour des applications en catalyse hétérogène    - Bonne Magali  -  29 octobre 2010

    Voir le résumé
    Voir le résumé
    Le sujet du Doctorat porte sur l'utilisation des voies de synthèse par mésostructuration pour la préparation de supports de catalyseurs poreux. Trois systèmes ont été abordés pendant la durée du Doctorat, mais l'objectif restait le même dans les trois cas puisqu'il s'agissait de contrôler la morphologie du support afin de permettre par la suite l'optimisation du catalyseur final. La première partie du travail a été consacrée à l'étude de la synthèse d'oxydes mixtes en milieu confiné (i.e. dans la porosité d'un support hôte). Des composés de type pérovskite (ABO3, avec A le lanthane et B un métal de transition) ont été préparés et dispersés sur différents supports siliciques de textures différentes. L'approche adoptée pour la synthèse, une méthode originale d'autocombustion développée dans le cadre du Doctorat, a permis d'obtenir des nanoparticules d'oxyde mixte de taille restreinte (< 4 nm), dispersées de manière homogène dans la porosité du support hôte. De telles tailles sont rarement rapportées pour des oxydes mixtes de ce type. Des tailles de domaine cristallin de l'ordre de 15-30 nm pour ce type d'oxyde mixte sont généralement observées. Bien que l'étude de l'activité de ces solides n'ait pas été abordée dans le cadre de ce travail, la mobilité de l'oxygène dans ces matériaux est largement supérieure à celle mesurée pour des pérovskites massiques ce qui montre clairement que ces nanocristaux se comportent différemment des cristaux massiques. Dans une deuxième partie, la synthèse, les propriétés texturales et structurales, ainsi que l'activité de nanocomposites SiO2 - TiO2 sont présentés. Par dépôt contrôlé d'un précurseur organique de titane, il est possible d'obtenir des nanocristaux d'anatase accessibles dans la porosité d'un support mésoporeux. Le mode de synthèse utilisé permet de déposer des quantités élevées d'oxyde de titane (jusqu'à 55 %pds), sans obstruer la porosité du support ni altérer les propriétés physiques du composite final qui présente toujours une surface spécifique élevée. Le maintien de propriétés attractives peut être attribué à la taille limitée des particules de titane générées, qui est généralement de l'ordre de 4 nm ou moins. Comme dans le cas de pérovskites, ces nanoparticules présentent une mobilité d'oxygène élevée, et des tests de réactivité ont montré que le contrôle de la taille de particule permettait une modulation de l'interaction métal - support (effet SMSI) lorsqu'un métal noble était déposé à sa surface. La dernière partie du Doctorat portait sur la synthèse d'alumine, une autre phase importante pour la catalyse hétérogène. Différentes voies de synthèses par mésostructuration ont été abordées, ce qui a permis de mettre en évidence l'intérêt de ces procédures pour l'obtention de solides présentant des surfaces spécifiques élevées et des tailles de pores élevées. Des résultats préliminaires ont aussi montré la flexibilité de ces voies de synthèse pour la fonctionnalisation de la surface de l'alumine (par incorporation d'un métal de transition ou d'un métal noble lors de la synthèse).

  • Caractérisation des propriétés physiques et électrochimiques de nanoparticules de platine    - Brimaud Sylvain  -  17 novembre 2008

    Voir le résumé
    Voir le résumé
    Des nanoparticules de platine ont été préparées par différentes méthodes colloïdales de synthèse. La variation des paramètres de synthèse a permis de constituer une collection d'objets présentant une grande variété de formes et des tailles différentes. Tailles et formes sont deux paramètres qui ont été caractérisés par microscopie électronique et par diffraction de rayons X. Les caractérisations électrochimiques ont permis d'apporter de nombreuses informations sur la structure superficielle exhibée par les nanoparticules. L'ensemble des résultats obtenus à l'issue de ces caractérisations ont été utilisés pour l'interprétation des voltammogrammes enregistrés lors de l'électrooxydation de monoxyde de carbone adsorbé à la surface des nanocristaux préparés. Un fort effet de la structure superficielle a pu être enregistré.

  • Développement de réactions modèles pour la caractérisation de l'acido-basicite de catalyseurs et d'adsorbants    - Carré Sonia  -  18 novembre 2008

    Voir le résumé
    Voir le résumé
    Les alumines sont très largement utilisées dans les procédés industriels, les propriétés acido-basiques de ces solides jouent un rôle dans le développement de nouveaux catalyseurs, il est donc important de bien connaître leurs propriétés. Ces oxydes sont généralement caractérisés par des méthodes physico-chimiques classiques, la plus employée étant l'adsorption (désorption) de molécules sondes suivie par spectroscopie infrarouge. Cependant les conditions étant assez éloignées des conditions de catalyse, il est souvent difficile de prévoir le comportement réel d'un catalyseur. L'utilisation de réactions modèles, dont les conditions de caractérisation sont plus proches de la catalyse, permet de mieux appréhender les propriétés acido-basiques des catalyseurs. L'objectif de cette étude est de développer des réactions modèles permettant de caractériser simultanément l'acidité et la basicité de diverses alumines de transition. Des études ont montré que les réactions de transformation du mélange cyclopentanol et cyclohexanone permettent d'estimer l'acido-basicité de catalyseurs. En effet deux réactions se produisent, d'une part un transfert d'hydrogène (TH) sur les sites basiques, et d'autre part les deux alcools présents se déshydratent sur les sites acides (DES). Les résultats ont montré qu'à 250°C, il est possible en une seule réaction de déterminer les propriétés acide et basique des alumines de transition et qu'il est possible de distinguer les alumines en 2 groupes : d'une part les alumines ŋ, γ et δ qui possèdent un caractère acido-basique voisin, et d'autre part les alumines θ et α qui possèdent un caractère basique plus marqué.

  • Développement d'électrocatalyseurs anodiques plurimétalliques nanostructurés pour une application en pile à combustible à membrane alcaline solide (SAMFC)    - Da Silva Correia Simões Mário  -  25 mars 2011

    Voir le résumé
    Voir le résumé
    Les piles à combustible alcalines sont des alternatives aux PEMFC, permettant un plus large choix des catalyseurs et de combustibles, comme les petites molécules organiques et les borohydrures. L'activité et la sélectivité de nanocatalyseurs synthétisés par une méthode colloïdale ont été évaluées pour l'électrooxydation du glycérol et du borohydrure de sodium en milieu alcalin. La formulation des catalyseurs a été basée sur le palladium. Son interaction avec Au, Ni et Bi a été étudiée. Un catalyseur Pt/C a été également étudié ainsi que son interaction avec Bi. Concernant l'oxydation du glycérol, les catalyseurs PdAu/C sont plus actifs que les catalyseurs Au/C et Pd/C. Ce fait est expliqué par un effet synergétique entre les deux métaux qui forment des alliages ordonnés. Dans le cas des catalyseurs PdNi/C riches en Pd un mécanisme bi-fonctionnel semble plus probable pour expliquer l'augmentation d'activité. Les catalyseurs PdBi/C et PtBi/C sont les plus actifs. Les fonctions alcools primaires du glycérol sont oxydées préférentiellement sur les catalyseurs à base de Pd et Pt. La production de l'ion hydroxypyruvate a été détectée sur le catalyseur Au/C. Un mécanisme de l'oxydation de NaBH4 sur le Pd a été proposé, impliquant les réactions d'hydrolyse, d'oxydation de l'hydrogène et du borohydrure. Les catalyseurs Pd0,5Au0,5/C et Pd0,5Ni0,5/C ont une activité identique à celle du Pd/C. Le catalyseur Pt0,9Bi0,1/C est actif pour l'oxydation directe de NaBH4 à bas potentiels. L'oxydation du glycérol permet la cogénération d'électricité et de produits chimiques à haute valeur ajoutée, tandis que l'oxydation de NaBH4 permet d'atteindre de fortes densités d'énergie et de puissance.

  • Synthèse et caractérisation de nanocatalyseurs à base de palladium pour l'oxydation du glucose et la réduction de l'oxygène moléculaire en milieu alcalin    - Diabaté Donourou  -  18 décembre 2012

    Voir le résumé
    Voir le résumé
    L'objet de cette étude était le développement de nanocatalyseurs pour une application dans une pile glucose/oxygène en milieu alcalin. Avec la demande de plus en plus croissante d'énergie propre et moins chère, il paraît judicieux de s'orienter vers des dispositifs moins toxiques de pile à combustible qui peuvent utiliser le glucose comme combustible. Ce travail de thèse s’est donc attaché à synthétiser et caractériser de nouveaux matériaux catalytiques à base de palladium (Pd/C, PdAg/C et PdNi/C) et à analyser leur activité vis-à-vis des réactions de réduction de l'oxygène et de l'électrooxydation du glucose. Les nanocatalyseurs utilisés lors de ces travaux ont été synthétisés par microémulsion «water-in-oil» et sont supportés sur du carbone Vulcan XC-72R. Les caractérisations physiques montrent des nanoparticules assez uniformes et la taille moyenne des particules reste inférieure à 5 nm. La réaction de réduction de l'oxygène commence tôt à la surface de ces catalyseurs (environ 0,92 V vs. ERH) et le nombre d'électrons échangés est proche de 4. Le couplage voltammétrie / spectroscopie IR a permis de montrer que le glucose s’oxyde à bas potentiel à la surface de ces électrodes. Le produit primaire de cette déshydrogénation est la gluconolactone qui s’hydrolyse en solution en gluconate. Le dioxyde de carbone est aussi un produit d’oxydation. Sa présence à des potentiels élevés montre que le squelette de la molécule initiale du glucose subit une adsorption dissociative notamment sur Pd70Ag30.

  • Synthèse, optimisation et caractérisation des nouvelles architectures catalytiques pour une application en pile à combustible PEMFC    - Dru Delphine  -  01 septembre 2016

    Voir le résumé
    Voir le résumé
    Ces travaux de recherche s'inscrivent dans le développement de nouveaux catalyseurs pour les piles à combustible de type PEMFC. L'objectif est d'améliorer le transfert de charges et de matières au sein des électrodes afin d'améliorer la durabilité des matériaux. Nous avons développé des catalyseurs qui permettent la transposition de la phénoménologie du point triple à l'échelle moléculaire. Le greffage de polymères conducteurs protoniques à la surface de nanoparticules de platine a été réalisé afin d'obtenir des complexes catalytiques nano-composites, comportant le catalyseur au platine, un conducteur protonique et un conducteur électronique. L'ensemble des matériaux issus de cette première étape ont été caractérisé en demi-cellule électrochimique afin de déterminer les catalyseurs les plus actifs et les plus sélectifs. Les matériaux les plus prometteurs ont enfin été testés en mono-cellule PEMFC de 5 cm² et 25 cm² afin de déterminer d'une part les performances in situ et d'autre part la durabilité des matériaux. Les électrodes nano-composites, formulées sans Nafion®, ont des caractéristiques équivalentes aux systèmes commerciaux. En effet, elles fournissent une densité de puissance maximale de 1 W.cm-2 et une durabilité de 20 µV.h-1 sur 300 h. Ces électrodes formulées sans composé fluoré permettent le recyclage du platine par pyrolyse.

|< << 1 2 3 4 5 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales