Vous êtes ici : Accueil > Sections CNU > Section 25 - Mathématiques

Section 25 - Mathématiques

Les thèses se rapportant à la section CNU "Section 25 - Mathématiques"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
14 ressources ont été trouvées. Voici les résultats 1 à 10
Tri :   Date Auteur Titre thèses par page
  • Sur l'intégrabilité algébrique des réseaux de Toda : cas particuliers des réseaux d3(2) et c2(1)    - Dehainsala Djagwa  -  28 novembre 2008

    Voir le résumé
    Voir le résumé
    Cette thèse a pour but l'étude de deux réseaux de Toda périodiques duaux avec deux degrés de liberté, ceux qui sont associés aux algèbres de Lie affine d3(2) et c2(1). Pour chacun de ces systèmes, nous démontrons d'abord son intégralité algébrique. Ceci permet ensuite d' utiliser de la géométrie algébrique pour décrire les surfaces invariantes génériques, leur compactification en tant que variétés abéliennes, la configuration des courbes à l'infini. Comme application, nous démontrons dans le premier cas une caractérisation des surfaces invariantes génériques comme jacobiennes de surfaces de Riemann de genre 2, un morphisme vers le système de Mumford et une nouvelle équation de Lax, qui permet d'écrire la solution explicite en termes de fonctions thêta. Pour le deuxième cas, nous démontrons que les surfaces invariantes génériques sont des variétés abéliennes polarisées de type (1,2), que nous caractérisons comme des variétés de Prym, associées à des surfaces de Riemann de genre 3, munies d'une involution

  • L'Intégrabilité des réseaux de 2-Toda et de Full Kostant Toda pour toute algèbre de Lie simple    - Ben Abdeljelil Khaoula  -  19 mars 2010

    Voir le résumé
    Voir le résumé
    Cette thèse traite essentiellement de deux systèmes intégrables associés à des algèbres de Lie simples. Les deux résultats principaux sont la construction et l'intégrabilité au sens de Liouville des réseaux de 2-Toda et de Full Kostant-Toda périodique sur toute algèbre de Lie simple. Ces réseaux sont l'un et l'autre décrit par un champ hamiltonien associé à un crochet de Poisson qui provient d'une algèbre de Lie munie d'une R-matrice. Nous construisons dans les deux cas une grande famille de constantes de mouvement que nous utilisons pour démontrer l'intégrabilité au sens de Liouville des deux systèmes. Nos constructions et nos démonstrations font appel à de nombreux résultats sur les algèbres de Lie simples, leurs Rmatrices, leurs fonctions Ad-invariantes et leurs systèmes de racines.

  • Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel    - Liu Gang  -  05 juillet 2011

    Voir le résumé
    Voir le résumé
    Dans cette thèse, nous explicitons la décomposition en irréductibles de la restriction d'une série discrète du groupe SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel et nous interprétons nos résultats dans le cadre de la méthode des orbites, de la géométrie hamiltonienne et de la quantification "Spinc". En particulier nous vérifions que l'admissibilité, c'est à dire le fait d'être une somme directe d'irréductibles intervenant tous avec multiplicité finie, est équivalent au fait que les variétés réduites sont compactes et nous relions les multiplicités à la quantification des variétés réduites.

  • Quelques structures de Poisson et équations de Lax associées au réseau de Toeplitz et au réseau de Schur    - Lemarié Caroline  -  06 novembre 2012

    Voir le résumé
    Voir le résumé
    Le réseau de Toeplitz est un système hamiltonien dont la structure de Poisson est connue. Dans cette thèse, nous donnons l'origine de cette structure de Poisson et nous en déduisons des équations de Lax associées au réseau de Toeplitz. Nous construisons tout d'abord une sous-variété de Poisson Hn de GLn(C), ce dernier étant vu comme un groupe de Lie-Poisson réel ou complexe dont la structure de Poisson provient d'un R-crochet quadratique sur gln(C) pour une R-matrice fixée. L'existence d'hamiltoniens associés au réseau de Toeplitz pour la structure de Poisson sur Hn ainsi que les propriétés du R-crochet quadratique permettent alors d'expliciter des équations de Lax du système. On en déduit alors l'intégrabilité au sens de Liouville du réseau de Toeplitz. Dans le point de vue réel, nous pouvons ensuite construire une sous-variété de Poisson Han du groupe Un qui est lui-même une sous-variété de Poisson-Dirac de GLR n(C). Nous construisons alors un hamiltonien, pour la structure de Poisson induite sur Han, correspondant à un autre système déduit du réseau de Toeplitz : le réseau de Schur modifié. Grâce aux propriétés des sous-variétés de Poisson-Dirac, nous explicitons une équation de Lax pour ce nouveau système et nous en déduisons une équation de Lax pour le réseau de Schur. On en déduit également l'intégrabilité au sens de Liouville du réseau de Schur modifié.

  • Étude de quelques liens entre les groupes de rang de Morley fini et les groupes algébriques linéaires    - Tindzogho Ntsiri Jules  -  25 juin 2013

    Voir le résumé
    Voir le résumé
    Cette thèse traite essentiellement des liens qui peuvent exister entre les groupes de rang de Morley fini et les groupes algébriques linéaires. En effet, nous y établissons quelques propriétés algébriques aux K-groupes ; d'ailleurs une étude de linéarité sur ces groupes est dressée et permet en particulier d'obtenir une généralisation du théorème de Levi sur la décomposition des groupes algébriques. Ensuite, nous étudions dans un univers de rang de Morley fini, une action définissable de SL2(K) sur un groupe abélien SL2(K)-minimal V où K est un corps définissable de caractéristique positive p > 0. À cet effet, nous montrons que le rang de Morley rk(V ) de V est pair et multiple de rk(K). Enfin, nous analysons sous quelles conditions, étant donné G un groupe algébrique sur un corps algébriquement clos de caractéristique non nulle, le quotient G=Z(G) est définissablement linéaire. Par ailleurs, nous montrons sous certaines hypothèses le groupe des automorphismes définissables d'un K*-groupe simple est interprétable.

  • Étude de la dynamique symbolique des développements en base négative, système de Lyndon    - Nguema Ndong Florent  -  26 septembre 2013

    Voir le résumé
    Voir le résumé
    Ce travail est consacré à l'étude de systèmes de Lyndon (pour la relation d'ordre alterné) et à la dynamique symbolique des développements des nombres en base négative. Pour un réel ß > 1 fixé, nous construisons un code préfixe récurrent positif permettant non seulement de montrer l'intrinsèque ergodicité du —ß-shift mais aussi de déterminer la fonction zêta qui lui est associée. Nous étudions les conditions pour lesquelles le —ß-shift possède la spécification. En outre, lorsque ß est strictement plus petit que le nombre d'or, le langage du —ß-shift admet des mots intransitifs. Cet état de fait engendre dans le système dynamique des cylindres négligeables par rapport à la mesure d'entropie maximale. Ces cylindres génèrent sur Iß=[—ß/(ß+1),1/(ß+1)[ de petits intervalles de mesure nulle (la mesure considérée étant l'unique mesure ergodique sur Iß). Nous en faisons une étude détaillée, en particulier nous déterminons ces intervalles "trous". Par ailleurs, nous étudions l'unicité des systèmes de numération des entiers relatifs en base négative et nous montrons qu'à chaque mot de Lyndon correspond un tel système.

  • Paires admissibles d'une algèbre de Lie simple complexe et W-algèbres finies    - Sadaka Guilnard  -  06 décembre 2013

    Voir le résumé
    Voir le résumé
    Soient g une algèbre de Lie simple complexe et e un élément nilpotent de g. Nous nous intéressons dans ce mémoire à la question (soulevée par Premet) d'isomorphisme entre les W-algèbres finies construites à partir de certaines sous-algèbres nilpotentes de g dites e-admissibles. Nous introduisons les notions de paire et graduation e-admissibles. Nous montrons ensuite que la W-algèbre associée à une paire e-admissible possède des propriétés similaires à celle introduite par Gan et Ginzburg. De plus, nous définissons une relation d'équivalence sur l'ensemble des paires admissibles. Nous montrons alors que si deux paires sont équivalentes, alors les W-algèbres associées sont isomorphes. Nous introduisons enfin les notions de graduation et paire admissibles b-maximales et nous montrons que les paires admissibles b-maximales sont équivalentes entre elles. Comme conséquence de ce résultat, nous retrouvons un résultat de Brundan et Goodwin sur les bonnes graduations. Dans une dernière partie, nous considérons des cas particuliers pour lesquels nous pouvons apporter une réponse complète à la question d'isomorphisme.

  • Sur la stabilité des sous-algèbres paraboliques d'une algèbre de Lie simple    - Ammari Kais  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit K un corps algébriquement clos de caractéristique nulle. Il est bien connu, d'après un résultat de Duflo, Khalgui et Torasso, qu'une algèbre de Lie algébrique quasi-réductive (définie sur K) est stable. La réciproque est fausse en général. Se pose la question de savoir, si pour certaines classes particulières d'algèbres de Lie non réductives, il y a équivalence entre ces deux notions. Plus généralement, les sous-algèbres biparaboliques forment une classe très intéressante (incluant la classe des sous-algèbres paraboliques et de Levi) d'algèbres de Lie qui ne sont pas toutes réductives. Panyushev conjecture que si une sous-algèbre biparabolique est stable, alors son stabilisateur générique est un tore. Cette conjecture peut être reformulée ainsi : une sous-algèbre de Lie biparabolique est stable si et seulement si elle est quasi-réductive. Compte tenu des résultats obtenus par ce dernier pour le cas des sous-algèbres paraboliques d'une algèbre de Lie simple de type A et C, on donne dans cette thèse une réponse positive à cette conjecture pour la classe des sous-algèbres paraboliques d'une algèbre de Lie simple. Au passage, nous montrons également qu'une sous-algèbre de Lie de gl(n, K) qui stabilise une forme bilinéaire alternée de rang maximal et un drapeau en position générique est stable si et seulement si elle est quasi-réductive.

  • Étude des restrictions des séries discrètes de certains groupes résolubles et algébriques    - Kouki Sami  -  01 mars 2014

    Voir le résumé
    Voir le résumé
    Soit G un groupe de Lie résoluble connexe et H un de ses sous-groupes fermés connexes d'algèbres de Lie g et h respectivement. On note g* (resp. h*) le dual linéaire de g (resp. h) ). Le sujet de ma thèse consiste à étudier la restriction d'une série discrète π de G, associée à une orbite coadjointe Ω C g*, à H. Si la restriction de π à H se décompose en somme directe de représentations de H avec multiplicités finies, on dit que π est H-admissible. Notons Pg,n : Ω → h* l'application restriction. Il s'agit de démontrer la conjecture suivante due à Michel Duflo : 1. La représentation π est H-admissible si et seulement si l'application moment Pg,n est propre sur l'image. 2. Si π est H-admissible, et si T est une série discrète de H alors sa multiplicité dans la restriction de π à H doit pouvoir se calculer en « quantifiant » l'espace réduit correspondant (qui est compact dans ce cas). Dans cette thèse, nous apportons une réponse positive à cette conjecture dans deux situations, à savoir : (i) Le groupe G est résoluble exponentiel. (ii) Le groupe G est le produit semi direct d'un tore compact par le groupe de Heisenberg et H est un sous-groupe algébrique connexe.

  • Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3    - Comparin Paola  -  26 septembre 2014

    Voir le résumé
    Voir le résumé
    Une surface K3 est une surface X complexe compacte projective lisse qui a fibré canonique trivial et h0;1(X) = 0. Dans cette thèse on s'intéresse à deux problèmes pour ces surfaces. D'abord on considère des surfaces K3 obtenues comme recouvrement double de P2 ramifié le long d'une sextique. On classifie les fibrations elliptiques sur ces surfaces et leur groupe de Mordell-Weil, c'est-à-dire le groupe des sections. Vu que une section de 2-torsion définit une involution de la surface (dite involution de van Geemen-Sarti), alors en classifiant les fibrations et les section de 2-torsion on obtient une classification complète des involutions de van Geemen-Sarti sur ce type de surfaces K3. On montre aussi comment calculer l'équation de la fibration et on étudie le quotient par l'involution de van Geemen-Sarti. Ensuite on montre la construction de Berglund-Hübsch-Chiodo-Ruan (BHCR): il s'agit d'une construction miroir qui part d'un polynôme dans un espace projectif à poids et d'un groupe d'automorphismes (avec certaines propriétés) et qui donne, en toute dimension, des paires de variétés Calabi-Yau. Ces deux variétés sont l'une miroir de l'autre en sense classique. On classifie toutes les paires de surfaces K3 obtenues avec cette construction qui aient en plus un automorphisme non{symplectique d'ordre premier p > 3. Pour les surfaces K3 une autre notion de symétrie miroir a été introduite par Dolgachev et Nikulin : la symétrie pour K3 polarisées (LPK3). On montre dans la thèse comment polariser les surfaces obtenues avec la construction BHCR et on preuve que deux surfaces miroir au sense BHCR, dûment polarisées, appartiennent à deux familles miroir LPK3.

|< << 1 2 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales