Vous êtes ici : Accueil > Sections CNU > Section 25 - Mathématiques

Section 25 - Mathématiques

Les thèses se rapportant à la section CNU "Section 25 - Mathématiques"

Pour être informé de la mise en ligne des nouvelles thèses correspondant à la recherche effectuée, abonnez-vous au flux RSS : rss

accès internet    accès intranet    confidentialité
14 ressources ont été trouvées. Voici les résultats 11 à 14
Tri :   Date Auteur Titre thèses par page
  • Quelques structures de Poisson et équations de Lax associées au réseau de Toeplitz et au réseau de Schur    - Lemarié Caroline  -  06 novembre 2012

    Voir le résumé
    Voir le résumé
    Le réseau de Toeplitz est un système hamiltonien dont la structure de Poisson est connue. Dans cette thèse, nous donnons l'origine de cette structure de Poisson et nous en déduisons des équations de Lax associées au réseau de Toeplitz. Nous construisons tout d'abord une sous-variété de Poisson Hn de GLn(C), ce dernier étant vu comme un groupe de Lie-Poisson réel ou complexe dont la structure de Poisson provient d'un R-crochet quadratique sur gln(C) pour une R-matrice fixée. L'existence d'hamiltoniens associés au réseau de Toeplitz pour la structure de Poisson sur Hn ainsi que les propriétés du R-crochet quadratique permettent alors d'expliciter des équations de Lax du système. On en déduit alors l'intégrabilité au sens de Liouville du réseau de Toeplitz. Dans le point de vue réel, nous pouvons ensuite construire une sous-variété de Poisson Han du groupe Un qui est lui-même une sous-variété de Poisson-Dirac de GLR n(C). Nous construisons alors un hamiltonien, pour la structure de Poisson induite sur Han, correspondant à un autre système déduit du réseau de Toeplitz : le réseau de Schur modifié. Grâce aux propriétés des sous-variétés de Poisson-Dirac, nous explicitons une équation de Lax pour ce nouveau système et nous en déduisons une équation de Lax pour le réseau de Schur. On en déduit également l'intégrabilité au sens de Liouville du réseau de Schur modifié.

  • Restriction des séries discrètes de SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel    - Liu Gang  -  05 juillet 2011

    Voir le résumé
    Voir le résumé
    Dans cette thèse, nous explicitons la décomposition en irréductibles de la restriction d'une série discrète du groupe SU(2,1) à un sous-groupe exponentiel maximal et à un sous-groupe de Borel et nous interprétons nos résultats dans le cadre de la méthode des orbites, de la géométrie hamiltonienne et de la quantification "Spinc". En particulier nous vérifions que l'admissibilité, c'est à dire le fait d'être une somme directe d'irréductibles intervenant tous avec multiplicité finie, est équivalent au fait que les variétés réduites sont compactes et nous relions les multiplicités à la quantification des variétés réduites.

  • L'Intégrabilité des réseaux de 2-Toda et de Full Kostant Toda pour toute algèbre de Lie simple    - Ben Abdeljelil Khaoula  -  19 mars 2010

    Voir le résumé
    Voir le résumé
    Cette thèse traite essentiellement de deux systèmes intégrables associés à des algèbres de Lie simples. Les deux résultats principaux sont la construction et l'intégrabilité au sens de Liouville des réseaux de 2-Toda et de Full Kostant-Toda périodique sur toute algèbre de Lie simple. Ces réseaux sont l'un et l'autre décrit par un champ hamiltonien associé à un crochet de Poisson qui provient d'une algèbre de Lie munie d'une R-matrice. Nous construisons dans les deux cas une grande famille de constantes de mouvement que nous utilisons pour démontrer l'intégrabilité au sens de Liouville des deux systèmes. Nos constructions et nos démonstrations font appel à de nombreux résultats sur les algèbres de Lie simples, leurs Rmatrices, leurs fonctions Ad-invariantes et leurs systèmes de racines.

  • Sur l'intégrabilité algébrique des réseaux de Toda : cas particuliers des réseaux d3(2) et c2(1)    - Dehainsala Djagwa  -  28 novembre 2008

    Voir le résumé
    Voir le résumé
    Cette thèse a pour but l'étude de deux réseaux de Toda périodiques duaux avec deux degrés de liberté, ceux qui sont associés aux algèbres de Lie affine d3(2) et c2(1). Pour chacun de ces systèmes, nous démontrons d'abord son intégralité algébrique. Ceci permet ensuite d' utiliser de la géométrie algébrique pour décrire les surfaces invariantes génériques, leur compactification en tant que variétés abéliennes, la configuration des courbes à l'infini. Comme application, nous démontrons dans le premier cas une caractérisation des surfaces invariantes génériques comme jacobiennes de surfaces de Riemann de genre 2, un morphisme vers le système de Mumford et une nouvelle équation de Lax, qui permet d'écrire la solution explicite en termes de fonctions thêta. Pour le deuxième cas, nous démontrons que les surfaces invariantes génériques sont des variétés abéliennes polarisées de type (1,2), que nous caractérisons comme des variétés de Prym, associées à des surfaces de Riemann de genre 3, munies d'une involution

|< << 1 2 >> >| thèses par page

Haut de page


  • Avec le service Ubib.fr, posez votre question par chat à un bibliothécaire dans la fenêtre ci-dessous.

 
 

Université de Poitiers - 15, rue de l'Hôtel Dieu - 86034 POITIERS Cedex - France - Tél : (33) (0)5 49 45 30 00 - Fax : (33) (0)5 49 45 30 50
these@support.univ-poitiers.fr - Crédits et mentions légales