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Abstract

T he massive growth of the Internet of Things (IoT) highly impacts current wireless

networks due to its heterogeneous quality of service (QoS) requirements. This

study deals with the problem of guaranteeing QoS for IoT devices that require urgent

and reliable communications. To achieve this objective in next generation IoT networks,

various solutions are proposed in this thesis towards improving spectrum management

and energy efficiency using emerging paradigms such as network slicing and software

defined networking (SDN). First, network slicing is implemented over LoRa Wide Area

Networks (LoRaWAN) and its assets are evaluated using various static and dynamic

slicing strategies. Simulations performed over NS3 simulator have shown the efficiency

of guaranteeing QoS for urgent communications which will always find isolated End-to-

End (E2E) physical resources for its slice and cannot be impacted by the interference

with less critical communications. Motivated by these results, a slice-based optimization

is proposed next to improve the dynamic slicing strategy by investigating more LoRa

parameters at the physical layer. The proposed method finds for each device the best

parameters configuration that potentially improves the performance of its slice in terms

of QoS and energy efficiency. Moreover, we also looked towards meeting upcoming

challenges in future IoT networks that comes from the increasing number of IoT devices.

Even with network slicing, LoRa scalability remained as a big challenge that should be

carefully considered specially due to the lack of flexibility in managing current wireless

networks. Therefore, to meet the global objective in guaranteeing QoS in large scale IoT

deployments, SDN and network slicing are adopted as backbones for a novel distributed

architecture and slicing strategy. The latter proposition is based on game theory and

adapts faster to the changes in a massive IoT environment by leveraging slicing decision

closer to the edge.
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Résumé

L ’évolution massive de l’internet des objets (IoT) a un impact important sur

les réseaux sans fil actuels en raison de ses exigences hétérogènes en qualité de

service (QdS). Dans cette étude on s’intéresse aux différentes techniques permettant le

maintien de la QdS pour les dispositifs IoT qui exigent des communications urgentes

et fiables. Pour atteindre cet objectif dans la nouvelle génération des réseaux IoT, dif-

férentes solutions sont proposées dans cette thèse pour améliorer la gestion du spectre

et l’efficacité énergétique en utilisant des nouvelles approches telles que le découpage en

réseaux virtuels (Network Slicing) et l’approche de séparation du plan de données et du

plan de contrôle (SDN). Premièrement, le découpage du réseau en tranches virtuelles

(slices) est mis en œuvre sur un réseau LoRa étendu à longue portée (LoRaWAN). En-

suite, ses avantages sont évalués à l’aide de diverses stratégies de découpage statique et

dynamique. Les simulations effectuées sur le simulateur NS3 ont montré l’efficacité du

découpage du réseau en matière de QdS. Les noeuds ayant besoin d’envoyer des informa-

tions urgentes ont toujours trouvé des ressources isolées pour leur slice et n’ont pas été

affectées par l’encombrement provoqué par des communications moins critiques en délai.

Motivés par ces résultats, une optimisation dans chaque slice est ensuite proposée pour

améliorer la stratégie de découpage dynamique en recherchant davantage à bien con-

figurer les paramètres LoRa de la couche physique. La méthode proposée trouve pour

chaque appareil la meilleure configuration susceptible d’améliorer les performances de

ses slices en matière de QdS et d’efficacité énergétique. En outre, nous avons également

envisagé de relever les futurs défis liés à la croissance du nombre des dispositifs IoT con-

nectés. Même avec le découpage de réseau, le passage à l’échelle avec Lora demeurait un

défi à prendre en compte en raison du manque de flexibilité dans la gestion des réseaux

sans fil actuel. Par conséquent, pour atteindre l’objectif global consistant à garantir la

QdS dans un réseau IoT à grande échelle, le découpage du réseau en slices virtuels et

SDN sont adoptés comme éléments principaux afin d’arriver à implémenter une stratégie

de découpage et une optimisation distribuée. Cette dernière proposition est basée sur la

théorie des jeux et s’adapte plus rapidement aux changements d’un environnement IoT

massif en appliquant l’approche de découpage à la périphérie du réseau.
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Introduction Générale

A vec le développement des réseaux sans fil de cinquième génération (5G), on

s’attend d’ici 2022 à voir s’établir une connexion efficace entre les humains et

les machines afin de garantir la flexibilité nécessaire pour gérer des réseaux avec des

besoins en qualité de service hétérogènes. Actuellement, les opérateurs font face à divers

défis et challenges lors du déploiement des communications IoT à travers les réseaux ex-

istants. Inévitablement, l’augmentation du nombre de dispositifs IoT connectés pose des

problèmes de charge et de congestion et auront un impact important sur les systèmes de

communication sans fil en usage actuels. Les dispositifs IoT nécessitent principalement

une batterie de longue durée de vie, une portée étendue, une capacité plus grande pour

prendre en charge des millions de dispositifs avec un coût de déploiement faible. Pour

répondre à ces caractéristiques, plusieurs technologies ont été proposées et développées

pour assurer la meilleure efficacité des réseaux étendus à faible consommation énergé-

tique (LPWAN).

L’objectif du chapitre I est de présenter les technologies LPWAN existant actuelle-

ment sur le marché. Une partie de ces technologies fonctionne dans un spectre de

fréquences sous licence (LTE-M et NB-IoT) tandis que l’autre communique via un spec-

tre de fréquences libre (LoRa et Sigfox). Nous avons commencé par évaluer la perfor-

mance du protocole LTE-M à travers plusieurs simulations sur NS3 [26]. En se basant

sur cette étude, nous avons également proposé par la suite une optimisation pour allouer

les ressources dans un réseau LTE-M qui considère les contraintes d’énergie et de qualité

de service pour chaque dispositif IoT [27][30]. La méthode proposée a beaucoup amélioré

la durée de vie des noeuds et le pourcentage des noeuds qui ont respecté leurs contraintes

en QdS mais nous avons était limité par le nombre de noeuds servis par une station de

base LTE qui n’a pas pu dépassé 250 dispositifs servis du à la limitations des ressources

radios LTE [75]. C’est pourquoi après avoir étudié et comparé les caractéristiques de

chaque technologie, nous avons choisi de travailler sur LoRaWAN qui fonctionne sous

un spectre de fréquences libre et supporte un réseau IoT plus condensé (des milliers de

dispositifs IoT peuvent être simulés dans une seule cellule au lieu d’une centaines dans
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un réseau LTE-M). LoRa commence à être de plus en plus répandu vu son accessibilité

basée sur un code source ouvert contrairement à Sigfox qui est plutôt une technolo-

gie propriétaire. Ensuite, nous mettons l’accent sur les derniers travaux de recherche

visant à optimiser les communications IoT et la gestion des ressources à l’aide des nou-

velles technologies qui assurent la virtualisation et la programmabilité des réseaux IoT.

Cependant, en partant de l’état de l’art, il y a eu peu de travaux de recherche qui se sont

focalisés sur la QdS des communications IoT en termes de respect des délais critiques, de

garantie d’un certain débit, et d’un taux de réception des paquets élevé. Ces différents

réseaux logiques sont appelés des slices du réseau dont chaque slice correspond à un

réseau virtuel de bout en bout entre un noeud IoT et un service réseau en s’appuyant

sur la même infrastructure réseau physique. Étant donné que le nombre de périphériques

IoT connectés augmente rapidement avec le temps, une solution efficace pour garantir

la qualité de service consiste à apporter de la flexibilité et une virtualisation des réseaux

IoT à l’aide de SDN et du découpage en slices. Cette QdS sera garantie en favorisant les

communications urgentes, et une gestion flexible du réseau divisé en plusieurs réseaux

virtuels configurés et gérés séparément. Pour chaque slice, une partie des ressources

physiques est réservée de bout en bout sur toutes les couches (accès réseau, coeur et

cloud) pour répondre aux besoins QdS des applications urgentes et fiables. Dans cette

thèse, afin de pouvoir garantir cette QdS pour les communications IoT, il va falloir tout

d’abord répondre aux questions suivantes:

• Comment affecter les noeuds IoT aux slices et comment classifier ces slices dans

LoRaWAN ?

• Comment réserver les ressources physiques LoRa pour chaque slice et à l’intérieur

de chaque slice, comment assurer une allocation optimisée des canaux ?

• Quels sont les paramètres qui impactent la qualité de service de chaque dispositif

LoRa et comment optimiser la configuration sans augmenter la complexité du

réseau et sans impacter sa performance ?

• L’architecture actuelle de LoRaWAN sera-elle capable de supporter l’utilisation à

grande échelle des communications, et comment pourra t-elle suivre les avancées à

venir ?

Dans le chapitre II, nous répondons aux deux premières questions en proposant tout

d’abord des nouvelles méthodes d’affectation des noeuds aux trois slices définis à la fin du

chapitre I. La première étape consiste à associer et détacher un noeud IoT d’une tranche

de réseau durant chaque intervalle du temps. Ce mécanisme est réalisé dynamiquement

avec une méthode basée sur l’algorithme BIRCH qui regroupe les noeuds selon leur

condition QdS, notamment en se basant sur le taux d’urgence défini par le rapport entre

le délai instantané et le seuil maximal de délai à ne pas dépasser. Le résultat de cette
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première partie est un groupe des noeuds associés aux tranches de réseaux dont chacun

doit répondre au maximum au besoin des noeuds en délai, en débit et en bonne réception

des paquets envoyés. Ensuite, dans la deuxième étape, nous supposons que le serveur

LoRa a une vue globale sur le réseau et le besoin de chaque noeud en termes de débit.

En se basant sur cette information, le serveur appliquera une estimation sur ces noeuds

et réserve les ressources à travers deux stratégies dynamiques:

• La première est nommée "Dynamic Slicing" qui estime le besoin de tous les noeuds

du réseau appartenant à chaque slice en commençant par le slice le plus urgent et

définit le pourcentage des canaux qui vont réserver pour chaque slice. Ce résultat

sera appliqué sur toutes les passerelles LoRa de la même manière mais change

dynamiquement à chaque intervalle du temps.

• La deuxième stratégie est également dynamique mais plus adaptée pour chaque

passerelle, d’où son nom "Adaptive Dynamic Slicing". De la même manière, le

serveur commence par le slice plus urgent, mais l’estimation des besoins des noeuds

et la réservation sont appliquées individuellement sur chaque passerelle. Le serveur

regardera les noeuds qui sont dans la marge de couverture de chaque passerelle,

estimera le pourcentage des canaux à réserver pour ce slice et passera ensuite au

slice suivant.

Ces deux stratégies dynamiques sont comparées par la suite à une troisième stratégie

statique nommée "Fixed Slicing" qui réserve les canaux pour chaque slice d’une manière

équitable. Ensuite, l’algorithme classifie les noeuds dans chaque slice selon leur niveau

d’urgence et commence à associer chaque noeud à la passerelle qui répond le mieux à

ses besoins en QdS. Une valeur d’utilité est calculée différemment pour chaque slice en

considérant la puissance de réception et le taux de congestion. Suivant la valeur calculée,

le choix du canal est réalisé d’une manière qui garantit au maximum la bonne réception

du paquet envoyé.

Nous avons prouvé dans les résultats que l’isolation entre les slices du réseau est to-

talement assurée. En effet, en augmentant le nombre des noeuds, le slice le plus urgent

n’a pas été impacté par le trafic envoyé par les membres des autres réseaux virtuels.

L’étude paramétrique de l’architecture montre que la meilleure stratégie de configura-

tion d’un noeud LoRa est la méthode dynamique. Cette dernière configure le facteur

d’étalement pour un noeud IoT suivant la puissance de réception de la passerelle LoRa

la plus proche. En utilisant cette configuration, l’évaluation de performance de chaque

stratégie de réservation de ressources a eu lieu. Ces résultats montrent que la stratégie

"Adaptive Dynamic Slicing" était la plus efficace pour réserver les ressources de chaque

slice. Par contre, quand le nombre de noeuds augmente, le slice "Best Effort" (BE)

perd plus de 50% du nombre de paquets envoyés par ses membres. Pour améliorer ces
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résultats, nous avons décidé d’explorer plus en détail les paramètres de configurations

de chaque noeud, notamment le facteur d’étalement et de la puissance de transmission,

pour améliorer les résultats.

Dans le chapitre III, nous avons retenu la meilleure stratégie "Adaptive Dynamic

Slicing" et nous sommes focalisés plus ardemment sur comment configurer les dispositifs

LoRa pour améliorer leur performance en tenant en considération les caractéristiques

du slice du réseau auxquelles ils appartiennent. Nous avons proposé une méthode de

configuration qui est adaptée pour chaque slice dont ses membres seront configurés avec

un coût différent qui inclue plusieurs objectifs. Cette méthode évite les interférences et

augmente la probabilité que le paquet sera bien reçu et décodé au niveau de la passerelle

vis à vis des autres paquets reçus simultanément. Dans chaque slice, l’algorithme cherche

pour chaque dispositif LoRa, la configuration optimale et la bonne combinaison du fac-

teur d’étalement et la puissance de transmission au lieu d’utiliser le mécanisme ADR

qui oblige la configuration d’un noeud par l’une des distribution de la Table I.4. Les

résultats montrent une amélioration majeure en termes de qualité de service et de con-

sommation énergétique lorsque chaque appareil est configuré avec une configuration op-

timisée du facteur d’étalement et de la puissance de transmission. Plus précisément, le

taux de perte de paquets diminue de 50% (à moins de 30%) pour le même nombre de

périphériques IoT. Cependant, il est prévu que le nombre de périphériques augmente

avec le temps et dépasse la capacité maximale qui peut être supportée actuellement par

une passerelle ce qui va à son tour augmenter le taux de perte des paquets dans les

différents slices du réseau. Ce challenge nous a motivé à chercher une réponse et trouver

une solution pour réaliser le passage à l’échelle et garantir la QdS et l’efficacité énergé-

tique des dispositifs LoRa.

Après avoir examiné dans le chapitre II les avantages que le découpage en plusieurs

slices virtuels apporte à LoRaWAN pour garantir la qualité de service des dispositifs IoT

en termes d’urgence et de fiabilité, nous avons amélioré les résultats dans le chapitre III

à travers une distribution optimisée des paramètres de la couche physique. Toutefois,

des estimations existent qui prévoient 20 à 30 milliards d’appareils IoT connectés d’ici

2022. L’infrastructure actuelle du réseau LoRa ne sera pas capable de prendre en charge

les défis à venir lors du déploiement de ce grand nombre de dispositifs IoT. Par con-

séquent, dans le chapitre IV, nous proposons une architecture basée sur SDN qui répond

aux challenges d’évolutivité en traitant les données et la prise de décisions au niveau

des passerelles LoRa. Dans ce contexte, c’est chaque passerelle LoRa qui va définir sa

stratégie de découpage en slices et l’affectation de ressources qui doivent être réservées

après une phase de coordination avec les passerelles voisines. En se rapprochant de la

périphérie du réseau, le contrôle des noeuds sera plus flexible à travers SDN et améliorera

la fiabilité des communications dans un environnement IoT encombré.
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General Introduction

I n the era of the internet of things, it is forcasted that the number of machine-

type devices will grow and reach 30 billions IoT devices connected by 2022 [36].

Thus, it is expected that machine-to-machine (M2M) communications will pose impor-

tant challenges on current wireless communications over both licensed and unlicensed

frequency bands. To reach an all connected world of humans and machines, network flex-

ibility is needed to be able to manage each network easily with each having conflicting

quality of service (QoS) requirements (i.e., ultra-reliable low-latency communications

(URLLC), enhanced mobile broadband (eMBB) and massive machine-type communi-

cations (mMTC). This objective is possible in next generation networks using major

arising technologies namely network functions virtualization (NFV), SDN and network

slicing. The present thesis directs towards improving spectrum management and energy

efficiency, defined as mandatory requirements, to enable QoS guarantees for IoT com-

munications in low power wide area networks.

Before achieving the objective defined above, advanced and most popular LPWAN

technologies are surveyed in Chapter I. Each LPWAN technology operates either in li-

censed or unlicensed frequency bands. We first review latest research works related to

spectrum management in cellular IoT networks using technologies such as LTE-M and

NB-IoT. The latter have smaller capacity than technologies operating in unlicensed spec-

trum which made us also look towards the latest contributions on spectrum management

and optimizations proposed for SigFox and LoRa wireless access networks. However, the

xx
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fact that SigFox is a proprietary technology drove us to choose LoRaWAN, being an

alliance with an open approach. To guarantee QoS in LoRaWAN network slicing, IoT

service types are divided into three virtual slices with each having different requirements

in terms of slicing priority, delay, throughput, and reliability.

In Chapter II, network slicing is implemented in LoRaWAN and its efficiency is inves-

tigated over various slicing strategies. The first step involves associating and detaching

an IoT node from a network slice during each time interval. We propose to dynami-

cally realize this mechanism with a method based on BIRCH algorithm which groups

the nodes based on the urgency rate computed as the ratio between the instantaneous

packet delay and the maximum delay threshold that should not be exceeded. The result

of this first part is a group of nodes associated with the virtual network slices. The

second step is to find an optimal resource reservation strategy which reserves physical

channels on LoRa gateways assuming that LoRa server has a global view of the network

and the need of each node in terms of throughput. Here, two dynamic slicing strat-

egy are proposed based on maximum likelihood estimation which dynamically adapt to

throughput requirements of each slice members at each slicing time interval. After that,

the third and final step is to allocate channel resources inside each virtual slice by clas-

sifying IoT devices according to the utility value computed based on delay urgency and

congestion rate. Finally, the server allocates each LoRa device to the channel providing

the highest utility value. Results have shown the utility of virtual network isolation to

avoid network performance degradation that comes from the increasing number of IoT

devices in a slice over another.

Although network slicing improved QoS results, there was still a room for improv-

ing reliability results in LoRa network slices by focusing more on improving devices

configuration parameters at the LoRa physical layer. In chapter III, a multi-objective

optimization method for LoRa devices configuration is proposed based on TOPSIS and

GMM methods. The latter takes into account QoS requirements of each device and con-

figures its parameters accordingly. In each slice, the algorithm searches for the optimal
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combination of SF and TP configuration for each LoRa device instead of using the ADR

mechanism which forces the configuration of a node by one of the distributions listed in

Table. I.4. The chosen configuration for a device avoids interference and increases the

probability of successfully receiving and decoding the packet at the gateway while taking

into consideration the other packets received simultaneously. The results show a major

improvement in terms of QoS and energy consumption however, it is expected that the

number of devices will increase over time and will exceed the maximum capacity that

can be currently supported by a gateway which will in turn increase the rate of loss of

packets in different network slice. This challenge motivated us to look for an answer and

find a solution to meet scalability challenges and guarantee QoS and energy efficiency

for LoRa devices.

Despite the improvement achieved in the results obtained using previous contribu-

tions and knowing that more than 30 billion IoT devices are estimated to be connected in

future generation IoT networks by 2022, scalability remained an important challenge for

next generation IoT networks. In a LoRa network slicing scenario, the current centralized

architecture of the state of the art will not be able to handle the challenges of network

resource management coming ahead in large scale future IoT deployments. Therefore, in

Chapter IV, we propose an SDN-based architecture that addresses scalability challenges

by processing data and decision-making at the edge of the network. The role of slicing

decision making and network configuration is leveraged to the gateway which defines the

slicing strategy and the resources that must be reserved after a coordination phase with

the other nearby gateways. By getting closer to the network edge, combining network

slicing with SDN advantages improve the reliability of communications in a large scale

network due its rapid adaptation to changes in a crowded IoT environment.
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CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND

I.1 Introduction

F or the last couple of years, operators needed to address various challenges and

complexities in deploying IoT communications within legacy networks. In-

evitably, the expected increase in the number of IoT devices causes saturation problems

and will have a large impact on current wireless communication systems. IoT devices

mainly require long battery life, extended coverage, larger capacity to support billions of

devices with low device and deployment cost. Driven from these requirements, various

technologies appeared as potential solutions for IoT network deployment. The purpose

of this chapter is to introduce the most emerging technologies nowadays for low power

wide area networks (LPWAN). We especially focus on the latest research efforts that

optimized IoT communications and resource management using emerging technologies

that provides virtualization and network softwarization.

I.2 Licensed Spectrum Technologies

In order to meet IoT requirements over cellular networks, various efforts were con-

ducted by standardization organizations and working groups to expand current human-

to-human (H2H) communications over LTE for machines (LTE-M), introduced by many

cellular operators and companies such as Nokia [82], Ericsson [37] and Qualcomm [111].

However, EXALTED [22] was the first project of the European Union’s Seventh Frame-

work Program (FP7) to present LTE-M as a new system that extends LTE specifications

and supports future wireless systems with M2M and H2H communications coexistence.

The 3rd Generation Partnership Project (3GPP) has also worked on a group of en-

hancements in M2M communications over LTE and LTE-A networks [98]. In its Release

12 and 13, 3GPP introduced many categories adapted for M2M communications (Cat-M)

that operate in half and full duplex modes. In that sense, Cat-0 was proposed as the first

technology in Cat-M which supports lower features in terms of cost, throughput, number

of antennas and includes power saving mode enhancements for user equipments (UEs).

IoT devices such as sensors and smart meters tend to have much smaller data messages
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to send and do not need high speed or large bandwidth. Therefore, in its Release 13,

3GPP introduced LTE-M and Narrow-band IoT (NB-IoT) as the two newest technolo-

gies to support low-throughput M2M communications. LTE-M provides 1 Mbit/s as

downlink and uplink throughput whereas NB-IoT provides few kbit/s throughput due

its smaller bandwidth (200 kHz) compared to the one reserved for LTE-M (1.4 MHz).

Both technologies operate in much lower signal-to-noise ratio (SNR) than conventional

LTE. In Release 14, CaT-M2 is proposed as a new enhancement that supporting 5 MHz

bandwidth and higher peak data rates for LTE-M devices. Afterwards, Release 15 came

up to enhance coverage for higher devices velocity (200 km/h), to specify new power

class (14 dBm) and propose new techniques, such as wake-up signal and relaxed mon-

itoring for cell reselection, to reduce latency and improve spectral efficiency [92]. In

Table I.1, the licensed technologies for IoT, as well as their respective research works

and optimizations, are summarized and described in details in the below subsections.

Rel. 8 Rel. 12 Rel. 13 Rel. 13 Rel. 14
Cat-4 Cat-0 LTE-M NB-IoT CAT-M2

Bandwidth 20MHz 20MHz 1.4MHz 200kHz 5MHz
DL Rate 150Mbit/s 1Mbit/s 1Mbit/s 25.5kbit/s 4Mbit/s
UL Rate 50Mbit/s 1Mbit/s 1Mbit/s 62,5kbit/s 6Mbit/s

Duplex
Full
Duplex

Full
Duplex

Half
Duplex

Half
Duplex

Half
Duplex

Number of
Antennas

2 1 1 1 1

Tx Power 23dBm 23dBm 20dBm 23dBm 23dBm

Table I.1: LTE Category-M technologies [37] [92]

I.2.1 NB-IoT

NB-IoT [21] [121] is proposed as a new technology that offers ultra-low cost, low energy

consumption, low delay sensitivity, low response time and enhanced network architecture

[80]. It enables the opportunity to deliver new network services for LPWAN commu-

nications. Using its 200 kHz bandwidth on licensed spectrum, NB-IoT offers 20 dB

coverage, 200 kbit/s maximum throughput and more than 15 years operation on a single

battery charge while keeping the same level of security as LTE [61] without modifying
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the existing cellular network infrastructure. Figure I.1 illustrates the three operational

scenarios that can be adopted for NB-IoT as follows:

Figure. I.1: Operation modes in NB-IoT [59]

• Stand alone: NB-IoT operates as a dedicated carrier where it can occupy one

exclusive GSM channel (200 kHz).

• Guard-band: NB-IoT operates within the guard band of an existing LTE carrier

and uses one physical resource block (PRB) of LTE (200 kHz).

• Inband: NB-IoT operates withing the bandwidth of a wideband LTE carrier and

uses one PRB of LTE (200 kHz).

Multiple works evaluated the performance of NB-IoT in real case IoT scenarios. In [9],

authors developed a testbed that allows NB-IoT devices to repeat signal transmissions

operating at very low power to boost the received signal quality. The coverage gain that

results from this method was analyzed using real life measurements and was shown to

be limited by the channel estimation quality and coherence time. However, transmission

signal repetitions increase the energy consumption and the latency in the whole NB-

IoT system. Therefore, authors in [7] searched for an energy-latency tradeoff based on

channel scheduling through derivation of the expected latency and battery lifetime for

each coverage class in NB-IoT systems. In [60], authors analyze the performance of
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NB-IoT and the improvement that it provides in terms of coverage and capacity for

IoT communications in rural area. For deep indoor communications, authors find NB-

IoT more suitable than LTE-M because it provides coverage for more than 95% of the

devices due to its Maximum Coupling Loss being 164 dB as compared to LTE-M’s 156

dB. However, NB-IoT causes some coverage issues upon NB-IoT deployment due to

both large path loss and interference [74]. The performance of NB-IoT is compared to

LTE-M for smart city applications, authors find that a battery life time of 8 years can

be achieved using both technologies. However, authors show that more devices can be

served in an LTE-M network than NB-IoT, while providing a 10 times lower latency [35].

For this reason, we pursued our research studies in this thesis using LTE-M because we

didn’t want to be limited to indoor IoT applications, we wanted to focus more on a large

scale IoT network scenario that includes a massive number of IoT devices.

I.2.2 LTE-M

LTE-M operates on a very small bandwidth and only monitors 6 resource blocks (RBs)

per subframe with a coverage enhancement of 15 dB with respect to LTE Release 12.

LTE-M is also characterized with an extended Discontinuous Reception (DRX) cycle for

both idle and connected mode in order to enable further power savings from the radio

perspective. Hence, by increasing DRX cycle from 2.56 seconds to a maximum value of

43.69 minutes, M2M communications with low duty cycle will be efficiently supported

[98]. The network architecture of LTE-M is illustrated in Figure I.2, uplink traffic

originating from IoT devices running various applications can be directly transmitted

to the eNodeb (eNB) or through an IoT gateway (GW) that helps the device to store

and relay their data to the eNB to increase transmission efficiency. Unlike legacy LTE

networks, LTE-M limits the amount of resources that can be allocated to one RB per

device in each transmission time interval (TTI). Hence, scheduling decisions are taken

differently based on the implemented scheduling algorithm. LTE-M network allows data

traffic from the base station (BS) to be routed to the remote IoT server through the

evolved packet core (EPC) which includes management and signaling functions of LTE.
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Figure. I.2: LTE-M network architecture [66]

The advantages that LTE-M brings for IoT communications are exploited in vari-

ous use cases including delay-sensitive applications (ex: instance presence sensors and

actuators for emergency alerting) and delay-tolerant applications (ex: temperature mon-

itoring). We first evaluated in depth the performance of LTE-M [26] in terms of coverage

and QoS and highlighted its advantages for M2M communications. In [128], LTE-M sys-

tem performance is evaluated based on field test results in Beijing ring rail lines. Results

show the potential that LTE-M provides in terms of reliability and QoS for specific IoT

services. Moreover, due to the large variety of M2M applications and its heterogeneous

interconnection in the network, a suitable resource access scheme for M2M communi-

cations is needed. Authors in [129], proposed a new random access procedure based

on the time slot-ALOHA mode of operation to reduce the power consumption of UEs.

Nonetheless, research work mainly focused on improving M2M/H2H coexistence to re-

duce the impact of M2M nodes on H2H communications using the power control scheme

proposed in [52]. Moreover, M2M/H2H coexistence can be also improved using resource

control in [119] where a Markov model of dynamic resource scheduling is proposed in

an LTE cell where M2M transmissions arrive according to a general Markovian arrival
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process. Furthermore, authors in [3] came up with two schedulers that consider H2H

traffic with a periodic M2M traffic produced by smart metering devices only. In [34],

authors propose an adaptive scheme that manages LTE-M network resources and avoids

fast resource depletion for M2M communications in emergency scenarios.

Nonetheless, various scheduling techniques tackled the QoS of mobile applications

such as voice and video call, but did not also consider the QoS and energy consumption

of M2M devices. The latter was tackled from different perspectives because M2M de-

vices are battery-driven and should be able to work for long periods of time. In [6], a

battery lifetime-aware resource allocation framework is proposed that provides battery

lifetime-fairness while reducing maintenance costs of M2M over LTE networks. Addi-

tionally, other scheduling methods were also adopted to save energy whether by reducing

the number of assigned RBs per device as proposed in [56], by reducing the transmission

rate [102] or by reducing transmit power for reliable data transmission [130].

In LTE-M, it is possible that an IoT device reaches its delay limit with a required

throughput higher than the one that can be provided through a single RB. Hence, it

could be useful to allocate additional RBs for this device for proper scheduling opti-

mization. This use case was not previously considered in LTE-M literature. Therefore,

we proposed in this thesis a novel optimization algorithm that jointly provides QoS and

energy optimization to IoT devices [30]. The proposed strategy has two-fold objectives:

• To minimize energy consumption by implementing a DRX switching mechanism

and extending the DRX cycle length which should provide power savings by putting

devices into sleep without affecting their QoS requirements.

• To consider the QoS of LTE-M devices where, depending on the running appli-

cations, a part of these devices could impose delay restrictions and need to be

urgently served and prioritized in the proposed scheduling strategy.

The global overview of the proposition is illustrated in Figure I.3 where the sched-

uler acts differently in both time domain (TDPS) and frequency domain packet schedul-

7



CHAPTER I. LOW POWER WIDE AREA NETWORK BACKGROUND

Figure. I.3: Global scheme of LTE-M scheduling algorithm [30]

ing (FDPS). In TDPS, active M2M devices having data packets in their buffer ready

for transmission are firstly detected. The algorithm selects afterwards the ones with the

best energy and channel conditions in order to reduce the search area and define the

best group of devices. We distinguish two scheduling behaviors for FDPS: on one hand,

when the number of active devices (NA) is higher than the number of RBs available in

each TTI (RBav), a selection process is needed to define the number of candidate nodes

selected for the memetic optimization block which cannot exceed the population size de-

fined in input. Otherwise, all active devices will be selected for FDPS and a sub-optimal

algorithm will be launched that leaves a maximum number of contiguous empty RBs

for urgent devices with respect to contiguity constraints and gives extra RBs for LTE-M

devices, if needed, following to their throughput requirements.

The proposed memetic algorithm is implemented into Network Simulator (NS3) plat-

form and evaluated its performance in a realistic IoT scenario which took into account

M2M traffic specifications in terms of infrequent and small packet data transmissions.

After analyzing deeply the achieved results of each algorithm, we showed that the pro-

posed scheduling scheme reduced the overall energy consumption in the system and

achieved the highest percentage of satisfied devices following to their QoS requirements

[30]. However, due to capacity limitations of LTE-M that cannot allow to serve more

than 250 devices simultaneously transmitting uplink traffic to a single eNB [75], we de-

8
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cided to move our focus towards emerging unlicensed spectrum technologies, i.e SigFox

and LoRaWAN, to be able to reach thousands of IoT devices served in a single cell.

I.3 Unlicensed Spectrum Technologies

Using its low-cost access to the airwaves, tech innovators took advantage of the unli-

censed spectrum to propose promising technologies to support IoT communications. In

this section, the focus will be on SigFox and LoRaWAN technical overview and their

performance in real IoT scenarios.

I.3.1 Sigfox

Sigfox [107] is an ultra narrow-band (UNB) Differential Binary Phase Shift Keying

(DBPSK) modulation technology operating on a very small channel bandwidth i.e, 100

Hz in Europe (on a band between 868 and 868.2 MHz) and 600 Hz in USA (on a band

between 902 and 928 MHz). Sigfox uses 192KHz of the publicly available band by send-

ing 3 messages using a random frequency to exchange messages over the air. For every

transmission, a Sigfox device randomly uses one of the multiple channels available in

a bandwidth with a packet duration that goes up to 2 ms [79]. This small bandwidth

usage in Sigfox provides the opportunity to concentrate the energy in a very small chan-

nel making it very robust against interference. IoT devices transmit short messages in

uplink as well as downlink with a throughput that varies between 100 to 600 bits per

second depending on the region.

Figure. I.4: SigFox architecture [25]
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The architecture of Sigfox network is illustrated in Figure I.4. It adopts a star

topology where IoT devices transmit their messages to the Sigfox network when the radio

signal sent reaches the BS within the range. A message can be received by multiple

BSs deployed by Sigfox network operators which detect, demodulate and report the

messages to the Sigfox Cloud using point-to-point (P2P) links. The Sigfox cloud then

pushes the messages to many customer servers and IT platforms. The time on air

of a packet is 6 seconds [118] where 6 messages can be transmitted per hour with a

payload of 4, 8, or 12 bytes. However, in this thesis we are looking towards simulating a

larger variety of applications with higher throughput requirements than the one provided

by Sigfox. In addition, Sigfox protocol is proprietary which prevented scientists from

working on this technology in their research studies. Therefore, we preferred to look

towards the possibility of working in LoRa wide area networks (LoRaWAN) for this

thesis contributions.

I.3.2 LoRaWAN

LoRa is a shortcut name for Long Range and a proprietary spread spectrum physical

layer that derives from Chirp Spread Spectrum (CSS) modulation as described in the

IEEE standard 802.15.4 [45]. CSS modulation transmits symbols by encoding them into

multiple signals of increasing or decreasing radio frequencies making signals more robust

to multi-path interference, Doppler shifts and fading [10]. Moreover, Forward Error Cor-

rection (FEC) and Cyclic Redundancy Check (CRC) techniques are also implemented in

LoRa to improve receiver’s sensitivity and the robustness of communications. Knowing

that LoRa is proprietary and capable of communicating with any other Mediaum Access

Control (MAC) layer, LoRa Alliance defines LoRaWAN MAC as an open source protocol

built on top of LoRa physical layer. The former defines the communication protocol and

system architecture for the network, whereas the latter enables the long-range commu-

nication link. LoRaWAN supports low-power and long-range communications where a

set of K = {1, 2, ..., k} IoT devices transmit directly to M = {1, 2, ...,m} LoRa GWs in

a star of stars topology before forwarding data to a backbone infrastructure. LoRa ar-

chitecture is shown in Figure I.5 where low throughput traffic is uploaded by each IoT
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device (thing) to the cloud application servers via IP networks. Within the backbone

network, operators servers perform authentication, validation, and forward the packets

to the application servers. The latter connects to the backbone network to receive the

data and send back the packets in downlink via LoRa GWs.

Figure. I.5: LoRaWAN architecture [10]

IoT communications are bidirectional where each LoRa device k ∈ K is characterized

with specific parameters that needs to be optimized to meet the requirements of each

application in terms of coverage, achieved throughput and energy consumption. In the

following we expound LoRa settings and their impact on network performance:

• Spreading Factor (SF): SF parameter is by definition the logarithm, in base

2, of the number of chips per symbol and impacts the duration of a Lora chip.

Each device k adopts specific SF configuration for information transmission. LoRa

spreads each symbol in a rate of 2SF chips per symbol with SF = {7, ..., 12}

resulting a data rate computed as written in Eq. I.1 below:

rk,c = SF.
Rchip

2SF
bits/s (I.1)

where Rchip denotes the chip rate and rk,c the data rate achieved by a device k on

channel c of LoRa GW m. Depending on the transceiver model, SF configuration

varies from 7 to 12 in a way that higher SF values correspond to more robust

communications but lower data rates whereas lower SF values increase the rate
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and reduce the a active time on air. Some research works ([13] and [12]) claim

that SFs are orthogonal to each other, whereas others [23] show that unperfect

orthogonality happens between SFs leading to interference between packets. In

this thesis, interference in LoRaWAN is considered and will be described in more

details later in the interference section below.

• Transmission Delay: Transmission delay parameter dk,c denotes the transmis-

sion delay of a packet with a length of L bits uploaded by device k to one of the

channels c that belongs to GW m.

dk,c =
L

rk,c
seconds (I.2)

• Transmission Power (TP): Transmission power parameter defines the energy

consumed by an IoT device and can be set between -4 and 20 dBm with a step of

1 dB, however in LoRa configuration, TP values vary between 2 and 14 dBm.

• Carrier Frequency (CaF): Three different radio bands are available for Lo-

RaWAN (137-175 MHz, 410-525 MHz and 820-1020 MHz). In this thesis, we

work on European frequency bands where operators work in in the 863-870 MHz

frequency band. Here, specific duty cycles are imposed on IoT devices by the Eu-

ropean frequency regulations where each device transmits on a certain frequency in

a way respected by both GWs and devices. LoRaWAN channels have a duty-cycle

as low as 1% which means that during the last 3600 seconds, a device must never

have transmitted more than 36 seconds in total.

Spreading Factor Sensitivity (dBm)

SF7 -130.0
SF8 -132.5
SF9 -135.0
SF10 -137.5
SF11 -140.0
SF12 -142.5

Table I.2: List of parameters

• Radio Bandwidth (BW): Based on the transceiver model, operators may choose

one of the 10 available bandwidth values that varies from 7.8 kHz to 500 kHz. Eu-
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ropean frequency regulations imposes that the bandwidth adopted for each channel

is 125 kHz. Increasing this bandwidth improves the data rate of LoRa device on

the expanse of sensitivity. Moreover, increasing the SF value configured on IoT

device also reduces the transmitted data rate, increases the strength of the signal

and offers a better sensitivity at the GW receiver as shown in Table I.2.

• co-SF and inter-SF Interference: LoRa GWs are unable to decode two packets

if both are received on the same channel with the same SF configuration. This

mechanism leads to packet loss of both packets due to co-SF interference. On the

other hand, inter-SF collisions happen between two packets if they were simulta-

neously received on the same channel with different SFs and are shown to cause

packet loss [23]. Signal to Interference Noise Ratio (SINR) varies based on SF

configuration on each device. The assumptions in [73] are followed where a packet

should survive interference that comes from other LoRa transmissions. Each device

configured with SF = i experiences a SINR value computed based on Eq. I.3:

SINRi,j =
P rx

i

σ2 +
∑

n∈∂j
P rx

n

(I.3)

where P rx
i is the power of the packet i under consideration sent by device with

SF = i, σ2 the lognormal shadowing component and P rx
n the power of one inter-

fering packet n ∈ ∂j configured with SF = j. Each element in the Table I.3 [44]

denotes the minimum signal power margin threshold Vi,j , with i, j ∈ {7, ..., 12},

that a packet sent with SF = i must have in order to be decoded successfully over

every interfering packet with SF = j. Hence, packet survives interference with all

interfering packets if, considering all combinations of SF, a higher power margin

value (dB) is satisfied than the corresponding co-channel rejection value. One thing

to note is that values in below matrix are not symmetric because the power needed

to decode a packet is higher when a packet intercepts another one configured with

smaller SF. This is because the smaller SF configuration, the stronger the signal

power. Taking for example SF8 and SF10, a higher power is needed to decode

packets if a packet configured with SF8 intercepts another configured with SF10
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(30 dB). However, if the opposite case happened, a smaller power margin value

(22 dB) will be needed to decode the SF8 packet intercepted by SF10 packet.

Desired Packet

Interferer Packet
SF7 SF8 SF9 SF10 SF11 SF12

SF7 -6 16 18 19 19 20
SF8 24 -6 20 22 22 22
SF9 27 27 -6 23 25 25
SF10 30 30 30 -6 26 28
SF11 33 33 33 33 -6 29
SF12 36 36 36 36 36 -6

Table I.3: Cochannel rejection (dB) for all combinations of spreading factor for the
desired and interferer packets

• Propagation Loss model: The log-distance propagation loss model is adopted to

evaluate the performance of LoRa devices in a dense environment and is expressed

following to the Eq. I.4 below:

L = L0 + 10 · Γ · log10

(
d

d0

)
(I.4)

where L denotes the path Loss (dB), d the length of the path in meters (m), Γ

represents the path loss distance exponent, d0 the reference distance in meters (m)

and L0 the path loss at reference distance (dB).

• Coding Rate (CR): CR is computed based on Eq. I.5 in which the redundancy

of the error correction (EC) code is determined and varies between 1 and 4.

CR =
4

4 + EC
with EC = 1, 2, 3, 4 (I.5)

• Adaptive Data Rate (ADR): ADR is a mechanism for optimizing throughput,

energy consumption and time on air (TOA) in LoRaWAN and is generally more

efficient for static devices having stable radio frequency (RF) conditions. Depend-

ing on the conditions of the environment between the IoT device and the GW,

network sever will determine SF and TP values to work on between one of the

combinations shown in Table I.4 below.
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Spreading Factor Transmission Power (dBm)

SF 7 TP 2
SF 8 TP 5
SF 9 TP 8
SF 10 TP 11
SF 11 TP 14
SF 12 TP 14

Table I.4: ADR parameters configurations

ADR is highly efficient and very effective in LoRa parameters configuration to

maximize battery lifetime, range and overall network capacity. LoRa network

server can manage the achieved throughput and the output transmission power

used for the communication for each LoRa device individually. The better the

coverage the lower the SF and TP configuration. ADR computes the median SNR

value of the last 10 received uplink packets, compares it against the SNR limit for

each SF and decides afterwards the best configuration.

Multiple research works in the literature evaluated LoRa networks performance [123]

[64] [117]. Other research studies focused on evaluating LoRa scalability [78] while

considering co-SF interference that comes from collisions when using the same SF con-

figuration on the same channel [43] whereas others assumed that SFs on a channel are

perfectly orthogonal [13] [12]. SF represents the ratio between the chirp rate and the

data symbol rate and affects directly the data rate and the range that a LoRa device

can reach away from a LoRaWAN GW. Moreover, co-SF interference directly impacts

communication reliability, reduces the packet delivery ratio (PDR) successfully decoded

at the GW [24] and limits the scalability of a LoRa network when increasing the num-

ber of devices [122]. Therefore, scalability should be considered in any upcoming study

related to SF configuration strategies and network deployments. Some study examples

focused on finding the optimal transmitter parameter settings that satisfy performance

requirements using a developed link probing regime [11]. In [67], the authors analyze

several SF configuration strategies where a group of LoRa devices can be configured with

similar or heterogeneous SFs based on their position from the GW. The goal is to find

the scheme that gives the best PDR. However, the impact of SF and TP configuration

on network slicing has not been previously tested by the research community.
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I.4 Towards enabling programmability in IoT networks

In traditional IoT networks, each equipment requires to be configured separately. This

makes maintaining, configuring and adapting network devices to the changes that hap-

pen in the device, an expensive and time consuming task [8]. To tackle this problem,

Software Defined Networking (SDN) emerged as a promising solution towards enabling

programmability, flexibility and virtualization. Nowadays, including various IoT use

cases in a single network is not straightforward due to their heterogeneous QoS require-

ments. Hence, it is hard for operators to guarantee QoS requirements of each service.

Network slicing (NS) provides for each use case isolated network resources based on its

specific needs. This section defines both SDN and NS paradigms and explores research

works that integrates virtualization in IoT networks.

I.4.1 Software Defined Networking

SDN is an approach for network management that enables programmability and decou-

ples the data plane from the control plane without one restricting the growth of other.

In a network that requires fast adaptation due to the increasing number of connected

devices, managing these elements becomes complex especially in IoT where each de-

vice may install various IoT applications and settings. To counter this problem, SDN

emerged as new paradigm [91] that brings the ability to dynamically control the network

programmatically through software applications [50].

The network architecture illustrated in Figure I.6 shows how SDN decouples the

control plane from the data plane [8] by moving the control logic into the SDN control

layer. The control plane programmatically control network resources through a logically

abstracted view of the network and expose this view to the application plane where oper-

ators configure IoT applications through northbound application programming interfaces

(API). This facilitates the task for operators to monitor each softwarized network and to

define the forwarding rules based on the traffic and the requirements of devices. Open-

Flow [76], is a multi-vendor protocol which defines the interface between the control

plane and SDN switches to instruct each switch on how to handle incoming data packets
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Figure. I.6: SDN architecture [16]

through the southbound API. Hence, the data plane of the network will be only re-

sponsible for monitoring local information, gathering statistic and forwarding the traffic

according to rules received from the centralized controllers.

I.4.2 Network Slicing

Softwarized and virtualized networks enabled the ability to support heterogeneous ser-

vices running on top of the same physical infrastructure with each having isolated slice

created and managed in an "on demand" manner. Network slicing is an E2E concept

covering all network layers and segments. This means that slicing, performed on access,

core and transport networks, will provide specific hardware requirements (bandwidth,

radio resources, processing power, storage, etc.) across multiple operators [46].

By isolating virtual resources with network slicing, various use cases illustrated in

Figure I.7, can be served with specific QoS requirements in terms of urgency, through-

put and reliability, in a way that removes the impact that may come from a slice over

another. However, managing each slice and finding the appropriate amount of resources
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Figure. I.7: Network Slicing architecture

that should be allocated to each slice, remains an important challenge due to physical

resources limitation and the various amount of services required in IoT scenarios. If the

requirements for those virtual networks were properly instantiated on physical network

infrastructure through orchestrated SDN and carefully designed, network may consume

more resources than anticipated, becomes slower, unreliable and impacts other network

slices performance. To tackle this challenge, multiple solutions were proposed by the

research community to optimize network management in IoT networks and will be listed

in detail in the following section.

I.4.3 Network Slicing and SDN integration in IoT

In large scale IoT networks, the cloud-based server should be able to acknowledge more

messages as the number of IoT devices in the network increases. Hence, network flex-

ibility is required and potentially reached using network slicing and SDN to provide

heterogeneous QoS requirements through isolated E2E virtual networks controlled with

SDN to facilitate the task for operators to manage IoT networks. The latter is com-

posed of multi-networks supporting applications with various QoS requirements in terms

of reliable delivery and minimum delay [125]. Therefore, authors proposed in [85] a multi-

layered IoT architecture involving SDN that is able to cope with various identified IoT

challenges, i.e. designing a system able to cope with numerous use cases, ensuring QoS

for IoT, controlling congestion and avoiding side effects on legacy services. Moreover,

various research works highlighted the efficiency of SDN in IoT networks in terms of
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security [40], improving transmission quality [110] and scalability through cloud-based

solutions [113]. In [120], authors proposed a novel IoT network slicing creation system

based on SDN and NFV emerging technologies which provides management flexibility in

a centralized fashion. However, all previous solutions are not effective enough to be de-

ployed in upcoming IoT challenges. Therefore, new slicing strategies should be adopted

to cope with the fast changes in a more congested IoT environment and to create network

slices and allocate physical resources accordingly.

I.4.4 Defining IoT Virtual Slices

In all contributions of this thesis, the first challenge was to propose a classification

of IoT devices based on which each service will have isolated and virtualized network

resources. Based on the IoT QoS requirements [2] [39], one can note that IoT devices

can be classified into three categories proposed in Table I.5 below:

QCI Slice Name Resource Type Priority
Packet Delay
Budget (ms)

PER % Example Services

71 URA GBR 1 100 10−3 Real time, alarm monitoring

72 RA GBR 2 200 10−3 Real time, live monitoring

73 BE nGBR 3 300 10−6 Delay tolerant, metering

Table I.5: IoT QCIs table

Urgency and Reliability-Aware (URA) slice: requires the highest slicing priority due

to urgency and reliability requirements of its members. Some examples of these appli-

cations are: surveillance and alarm monitoring. Based on Eq. I.6, UURA is computed

to define the utility for critical communications with wld and wr the weights of load and

reliability, σr = SINRk,l,m/SINRmax the rate of reliability of SINR that a device k

achieves on a flow fk,l,m over the highest flow reliability that can be achieved through

slice l and δr, a binary variable that guarantees a minimum threshold when searching

for the highest reliability links.

UURA = δr(σrwr + σldwld) with δr ∈ {0, 1} (I.6)

Reliability-Aware (RA) slice: requires lower priority consideration and are less critical
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in terms of delay. This slice presents a trade-off between reliability and load, i.e: health

sensors and home security systems.

URA = σrwr + σldwld (I.7)

Best Effort (BE) slice: requires the lowest priority due to their non-guaranteed data

rate and delay-tolerant QoS requirements, i.e: smart metering applications.

UBE = σldwld (I.8)

I.5 Problem statement and contributions

After presenting LPWAN technologies summarized in Table I.6, we have chosen to

work in this thesis on LoRaWAN because its a more scalable technology operating in

unlicensed spectrum. Unlike cellular IoT where only hundreds of IoT devices can be

simulated in a single cell, Lora is able to serve thousands of IoT devices while also being

an alliance with an open approach (instead of the proprietary one SigFox). However, in

the state of the art, there’s an obvious lack in providing QoS in IoT communications,

which till now is limited to just reliability, meaning it’s limited to just guaranteeing

the delivery of a packet to the base station without considering throughput and delay

constraints of the running application. Since the number of connected IoT devices is

rapidly growing, an efficient solution to guarantee QoS is by bringing virtualization to

IoT networks using SDN and network slicing. The motivation behind it is to improve

server level from end to end across multiple network layers. This guarantees QoS re-

quirements for IoT devices running urgent and reliable applications. We mainly answer

the following questions:

• How to assign IoT devices to virtual slices and how to classify these slices in

LoRaWAN ?

• How to reserve LoRa physical resources for each slice and inside each slice, how to

efficiently allocate each device to the appropriate channel ?
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• What are the parameters that impact QoS of each LoRa device and how to optimize

this configuration in a way that doesn’t increase network complexity and without

impacting network performance ?

• Is LoRaWAN architecture capable of supporting IoT communications in large scale

IoT deployments and how to efficiently meet the upcoming challenges ?

Features LTE Cat-1 LTE-M NB-IOT SIGFOX LORAWAN

Spectrum Licensed Licensed Licensed Unlicensed Unlicensed
Modulation OFDMA OFDMA OFDMA UNB/GFSK/BPSK CSS

Rx Bandwidth 20 MHz 1.4 MHz 200 KHz 100 Hz 125-500 KHz
Data Rate 10Mbps 200Kbps-1Mbps 20Kbps 100bps 290bps-50Kbps

Max nb of Msgs/day Unlimited Unlimited Unlimited 140 msgs/day Unlimited
Max Output Power 23-46 dBm 20 dBm 20 dBm 20 dBm 20 dBm

Link Budget 130 dB 146 dB 150 dB 151 dB 154 dB
Power Efficiency Low Medium Medium High Very High Very High

Interference Immunity Medium Medium Low Low Very High
Coexistence Yes Yes No No Yes

Security Yes Yes Yes No Yes

Mobility/localization Mobility Mobility Limited Mobility,
No localization

Limited Mobility,
No localization

Yes

Table I.6: LPWAN technologies comparison for IoT communications

I.6 Conclusion

LPWAN technologies are being more deployed nowadays in IoT networks due to their

efficiency in meeting QoS and energy constraints. However, this proliferation of IoT

technologies poses co-existence challenges as they differ in their settings where ones op-

erate in licensed frequency spectrum and others have the ability to communicate via free

frequencies spectrum. In this chapter, we presented LPWAN technologies specifications

and we listed the latest research work that evaluates their performance and optimization

efforts in improving IoT communications. In the next chapter, we answer the first two

questions by first proposing a new methods for assigning IoT devices to the three virtual

slices that we have previously defined for IoT communications. Next, we implement

network slicing where virtual networks share the same physical LoRaWAN infrastruc-

ture and we evaluate their performance over different SF configurations. We show the

impact of traditional IoT networks on energy consumption and how in this chapter, the

proposed new dynamic slicing and resource allocation strategy contributes in efficiently
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using LoRa resources and prioritizing urgent communications over delay tolerant IoT

applications.
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II.1 Introduction

I n Chapter I, the problem of providing QoS and flexible resource management for

IoT communications is clearly stated. More specifically, three main issues should

be tackled towards achieving this goal in LoRa networks:

• Finding the best way to assign IoT devices to the appropriate virtual slice that

meets their specific QoS requirements.

• Due to capacity constraints and the limited number of channels on LoRa GWs, it

is not straightforward to decide on how the amount of resources should be reserved

while avoiding resource starvation for any of LoRa virtual slices.

• Inside each slice, one should define a strategy on how to classify IoT devices and

allocate intra-slice channels accordingly.

These three problems are directly related in a way that inter-slice resource reserva-

tion and intra-slice resource allocation impact not only reliability and QoS, but also the

energy consumption of IoT devices. Few research works recently tackled network slicing

in IoT and focused on machine critical communications over various wireless networks.

The work in [81] introduced a slicing infrastructure for 5G mobile networking and sum-

marized research efforts to enable E2E NS between 5G use cases. Furthermore, authors

in [41] and [97] adopted NS in LTE mobile wireless networks. The former proposed a

dynamic resource reservation for M2M communications whereas the latter presents a

slice optimizer component with a common objective in both papers to improve QoS in

terms of delay and link reliability. In a 5G wearable network, the authors took advan-

tage of slicing technology to enhance the network resource sharing and energy-efficient

utilization [54]. Moreover in [31], the authors perform slicing in virtual wireless sensor

networks to improve lease management of physical resources with multiple concurrent

application providers. In [57], authors proposed several slicing methods for URLLC sce-

narios which require strong latency and reliability guarantees. Nowadays, guaranteeing
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service requirements in LoRaWAN with traffic slicing remains as open research issues

[1]. Our main contributions with respect to the surveyed literature are stated as follows:

1. Network slicing is implemented in LoRaWAN where virtual slices are created and

devices are assigned to one slice using a balanced iterative reducing and clustering

method using hierarchies (BIRCH) method. The performance of LoRa virtual

slices is investigated over different SF configurations in order to evaluate system

performance and find the one that serves best LoRa devices in each slice.

2. A dynamic inter-slicing algorithm is proposed where the bandwidth will be sim-

ilarly reserved on all LoRa gateways based on a maximum likelihood estimation

(MLE) and then the latter is improved and extended with an adaptive dynamic

method that considers each LoRa gateway separately and reserves its bandwidth

after applying MLE on the devices in its range. Both dynamic slicing propositions

will be compared to a straightforward fixed slicing strategy in which the GW’s

bandwidth is equally reserved between slices.

3. An energy model for LoRaWAN is integrated in NS3 based on LoRa energy specifi-

cations to analyze the energy consumed in each slice and an intra-slicing algorithm

is proposed that meets the QoS requirements of each slice in an isolated manner.

The remainder of this chapter is organized as follows. Section II.2 and II.3 respec-

tively present the LoRa system model and the network slicing problem established in

this paper. In Section II.4, the slicing algorithm is proposed and implemented over the

LoRa module of NS3 simulator [73]. The performance evaluation of the algorithm and

simulation results are analyzed and carried out through various scenarios in Section II.5.

Finally, Section II.6 concludes this chapter.

II.2 Modeling Network Slicing in LoRaWAN

LoRa network consists of a set of K = {1, 2, ..., k} IoT devices, M = {1, 2, ...,m} LoRa

GWs plotted over a cell and connected to external LoRa Servers via fronthaul links.

A slicing framework is defined that consists of a set of L virtual slices such that L =
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{1, 2, ..., l} can be created on physical network hardware. Each GW is characterized with

a fixed number of channels C = {c1, ..cc′ .., cC} in which part of these channels Cl,m will

be reserved for each slice l ∈ L on GW m ∈ M as illustrated in Figure II.1 below.

Figure. II.1: Channels slicing example over a LoRa GW

Compared to Sigfox [131], NB-IoT [93] and other IoT technologies, LoRa is more

resilient to interference and jamming [18] thanks to its ability to efficiently trade com-

munication range with high data-rate. Network slicing mainly brings flexibility to the

network by virtually reserving physical resources in order to meet the QoS requirements

of each slice. In IoT, each device requires specific QoS requirements in terms of delay

and reliability depending on the running IoT application. Hence, the channels of each

GW are divided into l slices with l ∈ L, as shown in Figure II.2 below. The main goal

behind slicing is to virtually split the network by reserving resources for each slice on the

same physical device with each slice l characterized by a priority spl and a bandwidth

bl,m at the GW level. A set of virtual flows F is defined where a device k associated to

slice l generates a flow fk,l,m that goes from device k to LoRa servers through the GW

m and is characterized by a utility metric Uk,l,m. LoRa GWs in range will receive the

packets. However, unlike traditional LoRa networks, only one GW forwards the packet

to LoRa servers to avoid duplicated packets.
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Figure. II.2: IoT slicing architecture in LoRa networks

II.3 Problem formulation

Optimizing network slicing in IoT is a threefold problem and involves: 1) LoRa devices

admission and association to slices; 2) Finding the best inter-slicing resources reserva-

tion strategy; 3) Intra-slice resources allocation algorithm.

First, L slices are defined based on the delay urgency factor and reliability requirements

of each device. Each device is assigned next to the slice that meets best its service latency

requirement. It is noteworthy that in IoT, the delay urgency and reliability represents

the major key factors to define the priority of a device over another without neglect-

ing the service type and the congestion that results from the large amount of IoT devices.

Based on throughput requirements of each slice, slicing rate is estimated to define

capacity cl that needs to be reserved for each slice l. Each GW m reserves for each

slice, some of its physical receiving channels. Finally, intra-slice resource allocation is

optimized in the third step by assigning each device in slice l to the most efficient virtual

flow with the highest utility metric. Let αk,l ∈ {0, 1} be a binary variable that indicates

whether a device k is associated with a flow fk,l,m ∈ F . The goal is to maximize the

number of LoRa devices assigned to virtual flows in a way that maximizes the utility

function adopted by each slice members. Therefore, the slicing and resource allocation

problem for IoT can be formulated as:
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Max
∑

k∈K

∑

l∈L

αk,lUk,l,m,∀m ∈ M (II.1)

subject to

C1 :
∑

l∈L

αk,l = 1,∀k ∈ K (II.2a)

C2 :
∑

kǫK

βk,mpk,l,m ≤ Pmax
m ,∀m ∈ M, ∀l ∈ L (II.2b)

C3 :
∑

kǫK

αk,lβk,mrk,l,m ≤ Rmax
l,m ,∀l ∈ L,∀m ∈ M (II.2c)

C4 : βk,m =





1 if device k is assigned to gateway m.

0 Otherwise.
(II.2d)

Knowing that multiple virtual network slices are isolated and built on top of a com-

mon physical gateway, (II.2a) ensures that each device should always choose exactly one

and only network slice even if the latter was implemented on different physical gateways.

Hence in a multi-gateway scenario, the device assigned to a slice will only have the op-

tion to choose between the flows that lead to the channels reserved for that slice. The

total transmission power of each GW m is limited in constraint (II.2b). Moreover, con-

straint (II.2c) guarantees the sum of uplink traffic sent by slice members do not exceed

the maximum data rate capacity of the slice that can be sent through each gateway.

Constraint (II.2d) ensures binary-association values βk,m between a physical IoT device

k and a physical LoRa gateway m.

II.4 Proposed Method

In LoRa networks, the general control plane and resource management module are cen-

tralized and moved to a management and control entity (MCE) in the cloud to ensure an

efficient coordination of resources. Hence, LoRa servers will be the final decision maker

in assigning the devices to the appropriate slice and defining the gateway that will trans-

mit the packet following to a three-steps optimization algorithm. In the first step, each

device will be assigned to the slice that meets its QoS requirements based on BIRCH

method. Next, after assigning each device to its corresponding slice, GW resources will
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be dynamically reserved for each slice based on MLE before finally forwarding the packet

to LoRa servers through the GW that provides the maximum utility value.

II.4.1 BIRCH-based Slicing Admission

Due to the large number of connected devices in IoT, BIRCH algorithm is adopted

[126] which belongs to the agglomerative hierarchical clustering family and was proven

as the best available clustering method for handling large datasets [127]. The main

goal behind this method is to assign IoT devices to LoRa slices by checking their QoS

requirements and moving from a large set of devices to a group of subsets with similar

QoS requirements. The most urgent devices are the ones that have the closest instant

delay dk to their packet delay budget (PDB) and are assigned the highest priority. uk

denotes the urgency factor of device k with uk = dk/PDBk. Given Kl devices in a

cluster l, the latter will be considered as a utility point uk of each device in a cluster

with ∈ Kl. Each node in the CF-tree is a cluster of subclusters defined by a clustering

feature (CF) as follows:

CF = (Kl, LS, SS) = (Kl,
Kl∑

k=1

uk,
Kl∑

k=1

u2
k) (II.3)

where Kl denotes the number of devices in the cluster, LS the linear sum of the Kl

utility points and SS the square sum of Kl utility points. BIRCH dynamically builds

a CF-tree at each time a new device is inserted based on two parameters: a branching

factor B and a threshold T . Each parent node contains a maximum number of B childs

and a single child contains at most T entries. In this problem, B represents the number

of L slices created with Kl the group of devices admitted to slice l. Hence, l nodes

derive from the root representing the slices created with each slice is made up of a group

of subclusters. Therefore, entries in CF-tree are not considered as devices but as a set

of subclusters C that belongs to slice l and groups devices with nearly similar utility

points. In Pseudo-code 1, the algorithm scans the clusters from the root (line 3) and

recursively traverses down the CF-tree and chooses the closest node at each level with

the smallest average inter-cluster distance D as follows:
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Pseudo-code 1 BIRCH-based Slicing Admission algorithm
Input : Set of devicesK, diameterD, branching factor L, thresh-

old T
1 begin
2 Initialize as many clusters as devices

for each k ∈ K do
3 Start from root

Search for closest child node according to D
Search for closest subcluster according to D
if number of entries < T then

4 Add k to subcluster Cl,l

Update CF of Cl,l

5 else if number of childs < B then
6 Create a new subcluster Cl,l′

Add k to Cl,l′

Update CF of the parent node Sl

7 else if number of parents < B then
8 Split child nodes and redistribute CF entries according

to closest D
9 else

10 Split parent nodes
11 end
12 end
13 Update CF entries in CF-tree
14 end

Output: Set of groups Gl(l=1,2,...,L)

minD =

(
Kl∑

k=1

Kl+Kl′∑
k′=Kl+1

(uk − uk′)

KlKl′

)1/2

,∀k ∈ Kl,∀k
′ ∈ Kl′ (II.4)

After defining the candidate child, a test is performed to find the closest CF-entry and

defines if the device can be added to the child without violating the threshold condition.

If so, the algorithm groups the node with the chosen entry and updates the CF-entry

of the candidate subcluster (line 4). If not, a new entry is created for the node inside

the candidate child node without breaking the branching factor condition (line 5-6).

Otherwise, the child node is splitted and the utility points are redistributed based on

the closest distance criteria to obtain a set of new subclusters that do not break the

branching factor constraint (line 7-8). In case the number of childs already reached the

maximum, the parent nodes are splitted and the childs are redistributed to the closest
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parents (line 9-10). After inserting the CF-entry, all CF informations of the path are

updated from the inserted information to the root (line 13).

II.4.2 Dynamic MLE-based Inter-Slicing Algorithm

Knowing the physical capacity C limitation in terms of radio channel resources of a

GW m, The goal of this scheme is to estimate and reserve the appropriate resources by

finding the maximum likelihood buffer demands for each slice l starting by the one with

the highest slicing priority. In this work, the traffic that needs to be uploaded follows

a Poisson distribution and LoRa servers are aware of the amount of data stored in the

buffer Bi of each slice member.

Lemma 1. Let Ti be the throughput needed by each device i,∀i ∈ Kl captured at each

slicing interval time and identified by a corresponding probability distribution. For a

fixed physical capacity, the optimum slicing strategy is to virtually reserve resources for

each slice based on the mean throughput of its members.

Proof : We consider Ti follows a Poisson distribution P(λ) where λ denotes the

throughput needed by device i assigned to slice l,∀i ∈ Kl. Let f(Ti|λ) be a proba-

bility density function similar to L(λ|Ti) that represents the likelihood of λ given the

observed throughput.

L(λ|T1, T2, ..., TKl
) = f(T1|λ)f(T2|λ)....f(TKl

|λ)

L(λ|T1, T2, ..., TKl
) =

Kl∏

i=1

e−λλTi

Ti!

logL(λ|T1, T2, ..., TKl
) = log

[
Kl∏

i=1

e−λλTi

Ti!

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑

i=1

log

[
e−λλTi

Ti!

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑

i=1

[
log(e−λ) + log(λTi) − log(Ti!)

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑

i=1

[
− λ+ Tilogλ− log(Ti!)

]

To find the maximum likelihood parameter, we apply the first derivative and solve it to
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zero.
∂logL(λ|T1, T2, ..., TKl

)
∂λ

=
Kl∑

i=1

[
− 1 +

Ti

λ

]

= −Kl +

Kl∑
i=1

Ti

λ
= 0

λ̂ =

Kl∑
i=1

Ti

Kl
,∀i ∈ {1, ...,Kl}

To prove that the λ̂ is the maximum value, we apply a second derivative as follows:

∂2logL(λ|T1, T2, ..., TKl
)

∂2
λ

= −

Kl∑
i=1

Ti

λ2
,∀l ∈ L

The optained result is always a negative number which indicates that λ̂ is maximum

and the optimal parameter to consider. Hence, the best slicing decision is to consider the

mean throughput λ̂l of slice l members ∀l ∈ L. However, slices are not equal in terms of

priority. Therefore, GW resources will be dynamically allocated to the most urgent slice

starting by the channel with the highest reliability. Let Θl = λ̂l/
L∑

l=1
λ̂l be the slicing rate

based on which the algorithm reserves for each slice a capacity cl,m = cm.Θl,∀l ∈ L.

Pseudo-code 2 summarizes the inter-slicing algorithm and starts with the most

critical slice (line 2). Depending on the slicing strategy, the algorithm equally reserves

the bandwidth between slices based on a straightforward "Fixed Slicing" (line 14-16)

or estimates the needed throughput λ̂i of all slice l members in the case of "Dynamic

Slicing" strategy, defines Θl for channels reservation and reserve a part of the bandwidth

on all LoRa GWs in a similar manner (line 3-7). If the "Adaptive Dynamic Slicing"

was adopted, slicing rate of each slice Θl varies from a GW to another because in this

case, MLE estimates throughput of each slice members deployed in the range of the

corresponding GW m (line 8-14). The algorithm moves next to the following slice,

repeats the process and stops when no resources are left for reservation.
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Pseudo-code 2 Dynamic and Adaptive Dynamic Inter-Slicing
Strategies
Input : Capacities cm, c′

n;
Number of slices L;
Set of Throughput Requirements Tl

1 begin
2 Put slices in decreasing order based on priority spl

if method=DS then
3 for each GW m do
4 for each slice l ∈ L do
5 Apply MLE Estimation based on the throughput

required by all slice l members
Define Slicing Rate Θl and Reserve capacity cl,m

6 end
7 end
8 else if method=ADS then
9 for each GW m do

10 for each slice l ∈ L do
11 Apply MLE Estimation based on the throughput

required by slice l members in the range of GW m
Define Slicing Rate Θl and Reserve capacity cl,m

12 end
13 end
14 else
15 Reserve capacity cl,m equally between slices
16 end
17 end

Output: Set of resources reserved for each slice l

II.4.3 Intra-Slicing Resource Allocation Algorithm

After reserving the radio resources for each slice, the goal next is to maximize the

utility function of slice members. In the previous subsection I.4.4, utility function for

each slice is computed based on multiple criteria weights for reliability and load and

are respectively manipulated using the analytical and hierarchy process approach. The

latter is proved as a very decent method for multi-criteria decisions and was adopted

in many IoT applications [114]. The algorithm searches in each slice for the gateway

that offers the most robust and reliable link with lowest delay [99], finds the highest

UURA metric and allocates resources accordingly. Increasing the number of devices will

decrease the reliability of links due to congestion. It happens sometimes for devices that

33



CHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA
NETWORKS

are more tolerant to delay, the most reliable link may be overloaded due to the increasing

number of devices and should not be taken into consideration. Instead, another channel

should be available that gives the best trade-off solution when computing URA metric

and offers the highest reliability with the lowest possible load. In BE slice, IoT devices

runs delay-tolerant applications with higher packet delay budget. Therefore, only the

load is considered in this slice utility UBE without taking reliability into consideration.

Figure. II.3: Flow modeling for IoT network slicing

In Figure II.3, a directed network N = (V,E) is considered, where each device k is

a source node s uploading traffic to external server considered as sink node t such that

s, t ∈ V . Moreover, each GW m is considered as edge node and bounded by the amount

of flow allowed in each slice l. In the latter, the flow that maximizes the utility function

of each device k is selected. Without loss of generality, it is assumed that no edges enter

the sources or exist sinks. For each edge, the respective utilities U ′
k,l,m and U ′′

k,l,m are

computed in the network based on Eq. II.5 below:

Uk,l,m = U ′
k,l,m + U ′′

k,l,m (II.5)

Each LoRa device k assigned to slice l searches for the most efficient virtual flow through
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GW m with the objective to find the highest utility metric Uk,l,m as shown in the

Pseudo-code 3 below.

Pseudo-code 3 Max-Utility Intra-Slice Resource
Allocation
Input : Set of LoRa devices K, GWs M , slices L

and channels c
1 begin
2 Initialize flow utilities to null for all e ∈ E

for each slice l ∈ L do
3 Put devices in decreasing order based on uk

for each device k ∈ Kl do
4 Draw network N(V,E)

Find path with the highest utility Uk,l,m

Allocate device k to fk,l,m

Update capacity cl,m

5 end
6 end
7 end

Output: Max-Utility flows allocation for LoRa de-
vices

II.5 Simulation Results

In uplink, centralized servers enable the opportunity to make efficient slicing configura-

tions based on data traffic in the buffer of each LoRa device. In this work, LoRa model

is adopted [73] to simulate the network in the open source NS3 simulator [83]. For ad-

ditional implementation details, one can refer to the work done in [72] by Magrin et al.

in which a complete description of the model is included and integrated in NS3 plat-

form. Each simulation is replicated 50 times and results are plotted with 95% confidence

intervals with respect to the parameters shown in the first section of Table II.1.

The experiment is realized in a realistic LoRa scenario where devices are choosing a

random time for transmission but periodically uploading to LoRa servers small packet

payloads that varies from 10 to 20 Bytes. Simulations start with 100 devices to emulate a

load of one due to the legal duty-cycle limitations of 1% in the European region [5]. The

maximum number connected to a single gateway is limited to 1000 devices following to

the scalability study in [55]. LoRa servers allow 8 MAC retransmissions for IoT devices
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before defining a packet delivery failure. Moreover, LoRa devices and gateways are both

placed over a cell of 10 KM radius following to a uniform random distribution. Each

device is configured with spreading factors that varies from 7 to 12 when uploading

traffic to LoRa GWs. Each GW is characterized by 8 receiving channels in the 867-868

MHz european sub-band. Based on the Eq. II.6 below, energy consumption is evaluated

when the number of LoRa devices increases in each slice.

Ek =
ptx

i + prx
i

V + epa
.dtx/rx (II.6)

where Ek is the energy consumed by an IoT device, V the LoRa supply voltage, EPA the

amplifier’s added efficiency, dtx the duration of transmission, prx
i the power of reception

and ptx
i the power of transmission that varies between 2 and 14 dBm based on the SF

i with i ∈ {7, .., 12} adopted. Based on LoRa ADR, for each SF a static power value

(dBm) is configured for transmission (Tx) and reception (Rx). An energy module for

LoRa module is integrated in NS3, inspired by the one that already exists for Wifi, and

is characterized with specific energy parameters and power model for LoRa [10] as listed

in the second section of Table II.1 below.

II.5.1 Proof of Isolation

The very first step before investigating slicing strategies is to prove the isolation concept.

Assuming that all devices are uploading packets to a single LoRa GW. The number of

LoRa devices is fixed to 20 in URA slice and the rest of devices in the network are

assigned to RA and BE slices. Figure II.4 proves the isolation concept because when

the number of devices increases in RA and BE slices, URA members are not affected

and the PLR percentage remained constant and nearly null whereas PLR increased in

RA and URA virtual slices in a more congested scenario.

II.5.2 SF Configuration Variation

In this section, the performance of LoRa slices is evaluated with different SF config-

urations for a fixed number of 300 devices. Three major configuration strategies are

36



CHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA
NETWORKS

Simulation Parameters
Simulation Time 300 seconds
Slicing Interval Time 50 seconds
Cell Radius 10 KM
Number of replications 50
MAC retransmissions 8
LoRa devices and GWs distribution Random Uniform
Propagation loss model Log-distance
Bandwidth 125 kHz
Spreading Factor {7,8,9,10,11,12}
Confidence intervals 95%
European ISM sub-band 863-870 MHz

Power Consumption Parameters [10]
Battery Maximum Capacity 950 mAh
LoRa Supply Voltage 3.3V
Amplifier Power’s added Efficiency 10%
Connected (Tx/Rx-SF7) 2 dBm
Connected (Tx/Rx-SF8) 5 dBm
Connected (Tx/Rx-SF9) 8 dBm
Connected (Tx/Rx-SF10) 10 dBm
Connected (Tx/Rx-SF11-12) 14 dBm
Standby 0.09 mW
Sleep 0 mW

Table II.1: Chapter II simulation parameters

Figure. II.4: Proof of isolation

considered, namely static configuration where all devices in the cell are configured with

the same SF, dynamic − random (DR) where each device randomly picks a SF value

and finally the dynamic−adaptive (DA) where each LoRa device estimates the best SF

configuration depending on the receiving power measured from the gateway. In static
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configurations, the test is repeated for each SF value. However, regarding dynamic con-

figurations, a device with a powerful receiving signal picks a small SF value whereas edge

nodes are generally configured with larger SF values. Table II.2 and Table II.3 include

the mean PLR% for each SF configuration with a fixed and variant packet transmission

intervals respectively. Packets may be lost when the gateway is saturated due to the load

in the network (Congestion PLR%), due to co-channel rejection (Interference PLR%) or

due to lack of sensitivity when the packet is out of range, or also if it doesn’t reach the

gateway due to an appropriate SF configuration (Sensitivity PLR%).

II.5.2.1 Fixed Packets Transmission Period

In this subsection, a decent comparison is performed between SF configuration methods

for a fixed packet transmission interval. Each device randomly selects a time for trans-

mission and then it periodically uploads a packet each 50s. Static − SF12 scored the

highest PLR percentage. By adopting this configuration, packets transmitted occupy

the spectrum for the longest time on air. Therefore, the highest impact on PLR% was

reached due to congestion. Packets arrive at constant intervals and cannot be decoded

due to gateway saturation. It is noteworthy to mention that no packets were lost due to

lack of sensitivity because increasing the spreading factor increases at its turn the range

and the probability for successfully decoding a packet. Unlike static − SF12, devices

with static− SF7 configuration lost more than half of the packets. However this time,

the main loss was due to lack of sensitivity for packets that are mainly transmitted by

edge nodes and cannot reach the gateway because SF7 offers the shortest range capa-

bility between SF configurations. Following these assumptions, one can now understand

why static−SF9 could be placed as a trade-off between range and spectrum occupation

with the best overall PLR% between the measured static configurations. As previously

mentioned, increasing SF configuration also increases the spectrum time occupation of

packets sent, which also increases the interference PLR% because the probability of

receiving packets with the same SF configuration at the same time will also increase.

Table II.2 illustrates PLR percentage for each category in each slice. Results show

that DA configuration was the most reliable technique because SFs are dynamically
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Slice
Name

Static Dynamic
SF7 SF8 SF9 SF10 SF11 SF12 Random Adaptive

Mean PLR % Overall 54.14 39.24 39.03 43.93 78.19 94.15 43.02 30.07

Sensitivity
PLR %

Overall 76.14 61.75 28.84 2.06 0 0 19.63 0
URA 17.99 17.90 17.99 19.74 0 0 18.73 0
RA 26.98 26.91 25.97 24.21 0 0 27.75 0
BE 55.03 55.20 56.04 56.05 0 0 53.52 0

Congestion
PLR %

Overall 22.16 32.35 53.78 63.61 61.9 69.53 69.51 86.43
URA 0.12 0.62 2.91 6.91 11.08 15.9 8.99 8.48
RA 0.41 1.75 9.42 30.65 46.75 49.76 36.28 34.76
BE 99.47 97.63 87.66 62.44 42.17 34.34 54.73 56.76

Interference
PLR %

Overall 0.89 4.87 16.15 33.32 37.30 30.47 9.84 12.39
URA 7.45 11.85 13.35 15.33 16.44 20.05 16.16 15.43
RA 42.40 42.21 40.01 35.88 30.08 28.01 35.12 36.29
BE 50.15 45.83 46.64 48.78 53.48 51.95 48.72 48.28

Table II.2: Packet Loss Rate variation with various SF configurations

configured on LoRa devices by measuring the receiving power that a GW gets from the

device depending on its position. The advantages that the latter configuration presents

are two-fold: first, depending on how far the device is from the gateway, a smaller

distance requires a smaller SF configuration and secondly, the fact of adopting different

SFs configuration reduces interference PLR and the probability of collisions. Regardless

of the adopted SF configuration method, the urgency character of URA slice members

explains the low percentage in terms of PLR compared to RA and BE slices. Urgent

packets are not sent as often as other slices which reduces the probability of packets

collision.

II.5.2.2 Variant Packets Transmission Interval

In Figure II.5, In this section, simulation is repeated with different transmission time

interval. static− SF9 is considered as the best static configuration and is compared to

DR and DA dynamic configurations when the packets transmission period increases. It

is noteworthy that regardless of the adopted configuration, increasing packets transmis-

sion interval decreases PLR due to traffic intensity decrease. This can be shown with the

decreasing behavior of all configurations for a common set of devices simulated. For all

SF configurations and transmission intervals, DA always had the best SF distribution

specially for high transmission intervals. This proves the utility of the former in realistic

39



CHAPTER II. ADAPTIVE DYNAMIC NETWORK SLICING IN LORA
NETWORKS

scenarios where congestion is normally higher due to the massive number of IoT devices.

In Table II.3, results show that reducing congestion has the same impact on net-

work performance of each slice. For each transmission interval, it is shown how the

percentage of PLR is distributed on each slice. Regardless of packets transmission in-

tensity, the PLR percentage decreased in all configurations in URA slice and had the

smallest impact on its communications reliability. Therefore, based on all performance

results, DA configuration is adopted for the following simulations in which we compare

the performance of fixed and dynamic slicing strategies in LoRaWAN.

(a) PLR variation with Static-SF9 configuration (b) PLR variation with DR configuration

(c) PLR variation with DA configuration

Figure. II.5: Performance study with/without considering load in metric calculations
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PLR % PTP (s)
Static-SF9 Dynamic-random Dynamic-adaptive
URA RA BE URA RA BE URA RA BE

Sensitivity
PLR %

20 24.68 22.98 52.34 18.86 26.12 55.02 0 0 0
40 20.35 25.81 53.84 18.69 27.43 53.88 0 0 0
60 19.97 24.15 55.88 18.25 27.36 54.39 0 0 0
80 18.23 24.22 58.46 18.52 26.82 54.66 0 0 0
100 17.32 23.92 57.85 18.80 26.96 54.24 0 0 0

Congestion
PLR %

20 11.57 45.75 42.68 10.46 39.39 50.15 10.93 39.30 49.77
40 8.00 37.26 54.74 8.78 36.33 54.89 8.88 36.73 54.39
60 5.77 24.71 69.52 8.01 31.49 60.50 7.92 32.38 59.70
80 3.95 13.74 82.31 6.45 29.25 64.30 6.30 29.40 64.30
100 3.13 8.33 88.55 5.29 23.84 70.87 5.11 24.16 70.73

Interference
PLR %

20 15.92 32.20 51.88 16.32 35.63 48.05 16.12 36.77 47.11
40 15.82 35.53 48.65 15.66 34.95 49.40 15.43 36.98 47.59
60 15.56 37.12 47.32 14.92 36.28 48.80 15.14 35.81 49.05
80 14.50 38.37 47.13 15.62 36.58 47.81 15.63 36.20 48.17
100 14.42 38.14 47.44 15.91 36.16 47.93 13.93 36.53 49.55

Table II.3: PLR variation with various SF configurations

II.5.3 Fixed vs Dynamic vs Adaptive-Dynamic Slicing Strategies

Following to previous simulations, dynamic−adaptive SF configuration is adopted which

has proved its worthiness for this study. The goal in this section is to evaluate the

performance of the fixed (FS), dynamic (DS) and the adaptive−dynamic slicing (ADS)

strategies. With FS, the number of receiving paths is reserved in an equal manner and is

compared to DS and ADS strategies where slicing decisions are performed using MLE

throughput estimation for each slice starting with the one with the highest priority.

Moreover, the impact of adding load metric to utility calculations is studied for each

slicing strategy when the number of LoRa devices assigned to each slice increases. Each

slice in a LoRa gateway suffers from congestion, decreasing with it the probability of

successfully decoding the packet.

Simulation results in Figure II.6 prove the efficiency of load consideration when

computing the mean values of slices with and without considering load in metric calcu-

lations. Being load-aware improves reliability in the network. When congestion in the

network increases, the traffic is balanced to the corresponding slice but on a less-loaded

gateway. Reliability on all slices improved especially in BE slice because most of its

members lose their packets due to congestion. In a comparison between each slicing

strategy, ADS with load consideration showed the most reliable performance for URA
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(a) URA slice PLR variation (b) RA slice PLR variation

(c) BE slice PLR variation

Figure. II.6: PLR in each slice with various slicing strategies

and RA slice as plotted in Figure II.6a and Figure II.6b respectively. This returns

for example to the case of URA slice where the sporadic nature of packet transmissions

requires low latency and high reliability with unsteady throughput needs. Therefore, an

appropriate estimation of throughput improves slicing and should be considered on each

GW separately because it differs from a GW to another. Moreover, Figure II.6c shows

that considering load in metric calculations scored approximately 50% improvement in

the PLR% of BE slice members. However, this did not prevent ADS from being the

lowest reliable strategy in BE slice. The reason returns to the fact that ADS prioritizes

a slice over another and reserves for it the needed bandwidth unlike FS where the band-

width is equally reserved between slices. BE members do not always get the needed
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bandwidth required for transmission when a small capacity is fixed for this slice. The

performance of each slice is evaluated next using ADS with a load strategy in terms of

energy consumption and the percentage of devices that respected their delay deadlines.

II.5.3.1 Percentage of unserved nodes in delay

The efficiency of ADS is mainly shown in Figure II.7 below. With ADS, LoRa devices

had the highest percentage of devices that respected their delay deadlines compared to

DS and FS strategies with an unserved rate that never exceeded 10% of the total

number of packets transmitted. This highlights the importance of including urgency

priority in slicing strategies and considering reliability in intra-slice resource allocation

algorithm due to its direct impact on the spreading factor configuration and the spectrum

occupation time.

Figure. II.7: Percentage of unserved nodes

II.5.3.2 Jain’s Fairness index

The goal of this study is to measure the metric that identifies underutilized channels in

each slice with FS, DS and ADS strategies. Based on Eq. II.7, we evaluate in Figure

II.8 the Jain’s fairness index of each slicing strategy as follows:

Fairnessindex =
(

n∑
i=1

xi)2

n
n∑

i=1
x2

i

(II.7)
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(a) URA slice Fairness index (b) RA slice Fairness index

(c) BE slice Fairness index

Figure. II.8: Fairness evaluation in each slice with various slicing strategies

where xi denotes the normalized throughput of each IoT device and n is the total number

of active devices in each LoRa slice. Jain’s fairness index varies between 0 and 1 with

1 being perfectly fair. ADS strategy provides the best distribution compared to DS

and FS strategies as plotted in Figure II.8a and Figure II.8b below. With FS

strategy, resources are divided equally between URA, RA and BE slices. This explains

fairness results of FS that are quite similar in all simulated slices. It is noteworthy to

mention performance degradation of ADS and DS strategies when moving from urgent

to less urgent slices. This is normal due to slicing priority consideration where resource

reservation algorithm begins with the most critical slice. However, ADS always had

a clear upper hand over DS strategy in urgent slices except for BE slice where less
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channels are reserved for its members as shown in Figure II.8c below.

II.5.3.3 Energy Consumption

When increasing the number of nodes, the total energy consumed increases for all the

simulated slices, as plotted in Figure II.9 below. However, URA slice always consumed

less energy even when the number of its LoRa members increased. This returns to

relation between SF and TP configuration shown in the second section of Table II.1.

Increasing SF will increase the transmission power and the energy consumption of a slice

member. Therefore, the consideration of reliability in utility calculations forces delay-

sensitive devices to take the most reliable path with the lowest spreading factor values

and transmission power compared to RA and BE slices.

Figure. II.9: Mean energy consumption variation

II.6 Conclusion

In this chapter, network slicing is implemented and investigated in centralized standard

LoRa architecture in which inter-slice resource reservation and intra-slice resource allo-

cation methods are both proposed and optimized with respect to the QoS requirements

of each slice members. Various slicing strategies are compared after proving the isolation

concept between each of LoRa virtual slices. Based on the results obtained, the adap-

tive dynamic network slicing appears to be the best slicing method between the ones
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compared in this chapter. However, it is shown in Figure II.6 that more than 50% of

the packets were lost in BE slice. We believe that these results can still be improved if

LoRa parameters of IoT devices were efficiently optimized to improve network perfor-

mance in each slice. In the following chapter, instead of considering the adaptive data

rate mechanism which jointly increases or decreases both spreading factor and transmis-

sion power of an IoT device, we propose a slice-based optimization method that finds

the best combination between LoRa SF and TP parameters in a way that maximizes

network performance of each slice in a LoRaWAN smart city scenario.
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III.1 Introduction

T he solution that we proposed in Chapter II using network slicing, has shown

its worthiness in providing urgency and reliability in LoRa networks. In this

context, an urgent packet will always have a part of LoRa resources reserved to guar-

antee its arrival to the gateway. However, after analyzing in depth reliability results,

we have noticed that there is still room for improvement to reduce the percentage of

packets lost in the network. Hence, we decided to investigate more in depth on how

LoRa parameters impact QoS of an IoT device and how to configure the latter properly

in a network slicing scenario.

Reliability in LoRa does not depend only on just successfully delivering a packet to a

channel above sensitivity, it also depends on the configuration of other packets received

at the same time on a LoRa channel which may cause significant packet losses due to

co-SF and intra-SF interference. The former happens when two packets configured with

same SF are simultaneously received at the same channel whereas the latter happens

when the interfere packet is decoded with different SF configuration. Many research

studies focused on proposing various SF configurations and distribution strategies over

multiple network deployments [84] with the goal to overcome capacity limits [116] and

to provide a trade-off solution that minimizes energy consumption while maximizing

reliability [62]. However, SF is not the only parameter that should be taken into consid-

eration when optimizing LoRa configuration.

Increasing TP of a device is also important to increase SNR and the chance of de-

coding one of the packets upon interference. However, one should also not forget on

battery constraints that should be respected to avoid depleting the battery lifetime of

IoT devices. In some works, authors showed the importance of configuring IoT devices

with a proper combination between SF and TP parameters to improve scalability of

LoRaWAN [89] and to avoid performance degradation and unfairness that happens in

LoRa network if IoT devices configure SF and TP locally [94]. LoRa originally includes
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a link-based adaptation of SF and TP configurations using the ADR mechanism. Many

works tried to propose modified and improved ADR algorithms with the goal to in-

crease reliability and energy-efficiency without taking into consideration the possibility

of intra-SF and inter-SF collisions [58] [108] [95]. The latter can be decreased with the

knowledge of the entire network or by finding the optimum configuration after testing all

combinations of LoRa parameters that respects specific thresholds [11]. However, this

method is considered as time consuming because sometimes, achieving multi-objectives

in terms of reliability and energy-efficiency do not always require tuning parameters, es-

pecially on IoT devices placed at the edge of their communication range [18]. In [65], the

performance of the official ADR mechanism proposed by LoRa is evaluated and shows

the impact of different configurable parameters in terms of slow convergence rate which

introduces higher energy consumption and packet losses.

All works previously mentioned from the literature improved LoRaWAN performance

using various optimization strategies. However, the random-based access nature in IoT

network gives the motivation to optimize network slicing with a slice-based parameters

configuration that treats each virtual slice differently without considering all IoT devices

as devices belonging to the same LoRa network. The goal behind this proposition is to

improve QoS of IoT devices and limit interference and collisions in each LoRa virtual

network. This chapter contributions extend the previous one by considering smart city

applications belonging to different QoS classes and are stated as follows:

1. We include QoS in LoRa, which was previously considered as a best effort tech-

nology, with the goal to test the flexibility that network slicing provides in terms

of traffic management and QoS integration.

2. We apply ADS, found to be the best slicing strategy in Chapter II, where the

bandwidth is efficiently reserved on each LoRa GW separately based on MLE esti-

mation. The goal of this scheme is to avoid channels starvation while considering

the exact need of each slice starting by the one with the highest slicing priority.

3. We propose TOPG as a novel slicing optimization method that is based on Tech-
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nique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Ge-

ometric Mean Method (GMM). The proposed method efficiently configures LoRa

SF and TP parameters and improves the performance of each slice in terms of

QoS, reliability and energy consumption.

The remainder of this chapter is organized as follows. We devote Section III.2 and

III.3 to respectively describe the network slicing system model in a smart city scenario

and the multi-objective optimization problem established in this chapter. Section III.4

presents the proposed slicing and optimization algorithm implemented over the LoRa

module of NS3 simulator [73]. The performance evaluation of the algorithm and sim-

ulation results are analyzed and carried out through various scenarios in Section III.5.

Finally, Section III.6 concludes the chapter.

III.2 Modeling Network Slicing in LoRa-based Smart City

Network

In a smart city network deployed with LoRa, various use cases are enabled for citizens

in terms of mobility, smart home, health and many other fields. However, due to the

heterogeneity of these applications, a single smart city network is unable to support all of

these traffic types within a network without compromising QoS for any of them. In case

of an accident, a connected vehicle should immediately communicate the information to

the people involved and responsible for emergency situations. However, this information

could be lost or arrived without respecting the required delay in urban cities. Hence, the

focus here is on applying traffic slicing in smart city scenarios, virtually isolated, and

with specific QoS thresholds. In Table I.5, the key QoS requirements of URA, RA and

BE slices were previously defined in Chapter I with each having running various IoT

applications illustrated in Figure III.1. One of the listed use cases is smart mobility,

where, an increase in communication delay between two vehicles or between a vehicle

and its base station may result a dangerous accident and should be provided with the

highest levels of urgency and reliability. On the other hand, some smart city applications

only require best effort behavior like metering and actuating to measure the consumption
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data of different resources like electricity, water, gas and heating power.

Figure. III.1: Smart city applications in LoRa-based network

Figure III.2 illustrates how IoT devices are connected to a LoRa GW in the actual

standard architecture (Figure III.2a) and configured with one of the SF-TP com-

binations, listed in Table I.4. The server aims to increase both SF and TP values

simultaneously to increase signal robustness and decode packets at larger distance from

the GW. However, when network slicing is applied on a Lora gateway (Figure III.2b),

ADR mechanism becomes inefficient specially if the device in question belongs to a slice

having specific QoS thresholds that needs to be respected before reaching external LoRa

servers through the internet. With traffic slicing, the receipt of urgent communications

is now guaranteed at the GW level. However, overestimating SF and TP configurations

leads to an increase in energy consumption due to the longer activity time for an IoT

device when uploading a packet with high SF configuration. Moreover, if a high SF is

configured, achieved throughput may be lower than the one that needs to be guaranteed

in the corresponding slice. Hence, for each slice, one should not be limited to discrete SF

and TP values proposed by LoRa ADR mechanism. This work enables the possibility

to define specific slice-based SF and TP combination to be configured on an IoT device
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in a way that respects its QoS thresholds.

Figure. III.2: (a) Standard LoRa and (b) LoRa network slicing with parameters opti-
mization

In this Smart City network, we assume that centralized LoRa servers are aware of

the QoS required by each device in terms of delay, throughput and reliability. More-

over, LoRa servers are responsible for defining resource reservation strategies on LoRa

gateways (GWs) and on configuring the devices with SF and TP parameters. Let

N(V,K) be a directed LoRa network including V={S,M,C} components and consists

of S LoRa servers, M = {m1, ..mm′ ..,mM } denotes the set of LoRa gateways and

C = {c1, ..cc′ .., cC} denotes the set of channels on each gateway. Let K = {k1, ..kk′ .., kK}

be the set of IoT devices connected to the gateways and belongs to the set of slices L.

Each slice is defined based on delay, throughput and reliability requirements of IoT ap-

plications [2]. It is noteworthy that to improve communications in an IoT environment,

multiple objectives should be reached. More precisely, we jointly consider in this chapter

QoS, energy, and reliability requirements as major key factors and objectives to optimize

parameters configuration of an IoT device belonging to a slice with a specific slicing pri-

ority spl. On each LoRa gateway, a slicing rate is estimated based on the throughput

required by the devices active in each slice l in order to define capacity cl that needs to be

reserved. Each gateway has a fixed number of C channels with Cl,m the set of channels

reserved for slice l on GW m. We search to jointly optimize QoS and network slicing

energy efficiency by assigning slice members with the proper SF and TP configurations.
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However, solving this multi-objective problem is challenging. Therefore, the goal in this

chapter is to optimize parameters selection after evaluating the cost and benefits in each

slice. We added σ1, σ2 and σ3 as constant variables to equally distribute the weight

between objective functions and we introduced αk,l ∈ {0, 1} and βCl,m ∈ {0, 1} as two

binary decision variables that respectively indicates the admission of device k to slice l

and the reservation of a channel Cl on GW m.

III.3 Multi-Objective Problem Formulation

Network slicing optimization in IoT is a twofold problem and involves:

1. Finding the best inter-slicing resources reservation strategy

2. Configuring each slice member with the optimum SF and TP parameters

The goal in this chapter is to optimize the global performance of each slice in terms of

QoS, energy, and reliability. This turns the second problem of finding the best SF and

TP configuration for an IoT device into a multi-objective problem formulated as follows:

III.3.1 QoS in a LoRa slice

Each device k adopts a specific SF configuration for information transmission. The

configuration of SF is very crucial because the latter is directly related to throughput

rk,c and transmission delay dk,c previously defined in Section I.3.2. Based on these

values, we model in Eq. III.1 the QoS cost as:

QoSk,c = rk,c + (1 − dk,c)

Maximize
∑

k∈K
αk,lQoSk,c,∀l ∈ L,

(III.1)

where QoSk,c denotes the benefits that should be maximized in each slice and respec-

tively includes dk,c and rk,c normalized by dividing rk,c and dk,c values by the highest

throughput and delay that can be achieved over a wireless LoRa link.

III.3.2 Interference in a LoRa slice

In LoRaWAN, the reason for loosing a packet uploaded by an IoT device is three-fold:
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1. when a packet is received under-sensitivity if the device was out of range or config-

ured with bad SF and TP values. This is indicated by PLR′
k,c denoted as binary

variable as follows:

PLR′
k,c =





0 if device k successfully reaches c ∈ Cl,m

1 Otherwise

The output of this variable mainly depends on the sensitivity of the gateway that

increases alongside an increase in SF configuration [73].

2. when packets are lost due to co-SF interference that happens between two devices

simultaneously transmitting with the same SF. Based on random access formula

[109], the probability of the latter GSF depends on the number of packets generated

during the transmission of one packet with the same SF and is written in Eq. III.2

below:

PLR′′
k,c = 1 − e−2GSF (III.2)

3. when a collision happens between two packets transmitted with different spreading

factors leading to a potential loss due to inter-SF interference. In this case, the

packet survives interference if its signal power was higher than the power margin

value (dB) needed to decode a packet from its interferer. Based on the power

margin matrix, previously explained in Table I.3, PLR′′′
k,c is modified to indicate

if a packet survives inter-SF interference on a channel or not.

PLR′′′
k,c =





0 if device k survives interference

1 Otherwise

The goal here is to find the configuration that maximizes the chances of decoding

a packet upon its reception at the GW level. After combining all these objectives, the

reliability cost is finally modeled in Eq. III.3 with the objective to find the configuration

that can minimize the probability of loosing a packet due to co-SF interference, inter-SF
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interference or low channel sensitivity:

PLRk,c = PLR′
k,c + PLR′′

k,c + PLR′′′
k,c

Minimize
∑

k∈K
αk,lPLRk,c,∀c ∈ Cl,m,∀l ∈ L

(III.3)

III.3.3 Energy Consumption in a LoRa slice

Increasing the SF reduces the transmitted data rate and decreases the transmission delay

and signal strength whereas higher TP increases SNR and the energy consumption of

an IoT device. The latter is defined in Eq. II.6 and is affected by both SF and TP

values. Accordingly, we compute the energy of a LoRa device during a slicing interval

time following to Eq. III.4 with the objective of minimizing energy consumption in a

LoRa slice without degrading QoS performance:

Minimize
∑

k∈K
αk,lEk,c,∀c ∈ Cl,m,∀l ∈ L (III.4)

Due to the multi-objectivity of the problem, we search to find the optimum slicing

strategy with the proper SF and TP configurations that simultaneously maximize QoS

benefits of each slice and minimize energy and reliability costs without under optimizing

a function over another. This multi-objective problem is formulated subject to the

constraints below:

C1 :
∑

l∈L

αk,l = 1,∀k ∈ K (III.5a)

C2 : bl,m ∩ bl′,m = ∅,∀l, l′ ∈ L,∀m ∈ M (III.5b)

C3 : 0 ≤ Pk,Cl
≤ Pmax

k ,∀m ∈ M, ∀l ∈ L (III.5c)

C4 :
∑

kǫK

αk,lβCl,mRk,c ≤ Rmax
l,m ,∀l ∈ L,∀m ∈ M (III.5d)
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C5 : αk,l ∈ {0, 1},∀k ∈ K,∀l ∈ L (III.5e)

C6 : βCl,m =





1 if channel belongs to slice l on GW m.

0 Otherwise.
(III.5f)

The first constraint (III.5a) ensures that each device should always choose exactly

one and only network slice even if the latter was implemented on different physical

gateways. Moreover, a perfect isolation is guaranteed in (III.5b) between two bandwidth

parts assigned for two different slices regardless if the latter was reserved on the same or

on two different gateways. The transmission power of each device is limited in constraint

(III.5c). Furthermore, constraint (III.5d) guarantees the sum of uplink traffic sent by

slice members which do not exceed the maximum data rate capacity of the slice that can

be sent through each gateway. Constraint (III.5e) ensures binary association values of

device k to slice l and constraint (III.5f) ensures binary reservation values of a channel

that belongs to slice l on a LoRa GW m.

III.4 Proposed Method

In this section, we expound the proposed slicing and configuration mechanism, illustrated

in Fig. III.3, that will optimize LoRa network slicing by catching up to the multi-

objective optimization problem in finding the appropriate resource reservation and the

best configuration to adopt for IoT devices.

Figure. III.3: The proposed slicing and TOPG optimization algorithm
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The first problem appears in finding a decent slicing strategy to split the physical

network in a way that avoids resource starvation. To this manner, we consider the

adaptive dynamic slicing strategy that we previously proposed in Section II.4.2. The

centralized controller estimates the need in throughput using MLE for each virtual slice

to define the rate of channels that should be reserved for the devices starting with the

slice with the highest slicing priority spl. In each slice, we propose a novel slice-based

TOPG method that combines GMM [124] and TOPSIS [106] optimization algorithms.

GMM is adopted to define the weight values based on the objectives importance in each

slice. These values are next imported to a TOPSIS-based optimization method that

searches for the best SF and TP configuration which meets utility requirements of each

slice members.

III.4.1 The Proposed TOPG Optimization Algorithm

After defining slicing objectives, we next need to adapt the weight of every objective

before optimizing SF and TP parameters configurations in a way that meets best the

requirements of the corresponding slice. To do this, we propose an optimization algo-

rithm based on GMM and TOPSIS methods.

Let Al=(aij,l)n×n be a judgment matrix where aij,l > 0 and aij,l × aji,l = 1. Each

value aij,l measures the importance of an objective i over another objective j for each

slice l. Based on the importance values in each slice, a priority vector is derived and

denoted as ψl = (ψ1,l, ψ2,l, ..., ψ(n−1),l, ψn,l), where ψl ≥ 0 and
n∑

i=1
ψi = 1, from the

decision matrix Al. With GMM, weight configuration for each objective is defined as an

objective function of the following optimization problem:





Minimize
n∑

i=1

∑
j>i

[ln(aij,l) − (ln(wi,l) − ln(wj,l))]2

s.t. wi,l ≥ 0,
n∑

i=1
wi,l = 1,∀l ∈ L

which have a unique solution and can be simply solved by the geometric means of the

rows of each slice’s decision matrix Al:
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wi,l =
n

√∏n
j=1 aij

n∑
i=1

( n

√∏n
j=1 aij)

(III.6)

After finding the objective weights for each slice, we import the weight vector of each

slice into a decision matrix Dl, which consists of a set of possible alternatives Ax as

shown in the below matrix:

Dl =

Alternatives w1,l .. wn−1,l wn,l






A1 a1,1 .. a1,n−1 a1,n

.. .. .. .. ..

.. .. .. .. ..

Am−1 am−1,1 .. am−1,n−1 am−1,n

Am am,1 .. am,n−1 am,n

where each value ax,y represents a parameter configuration of a device with y ∈

{1, 2, ..., n} defines the objective and x ∈ {1, 2, ...,m} denotes a combination of SF i ∈

I = {7, ..., 12} and TP discrete values j ∈ J = {2, ..., 14} in dBm among which LoRa

servers need to assign the device with the best configuration based on Wl, the set of

objectives weight values of the corresponding slice. TOPSIS method requires normalized

values ax,y in Dl with the goal is to find the alternative with the shortest distance from

positive ideal solution and the one with the largest distance from the negative ideal

solution.

ax,y =
ax,y√
m∑

x=1
a2

x,y

, with x ∈ {1, ...,m}, y ∈ {1, ..., n} (III.7a)

In other terms, the goal is to find the best configuration that maximizes QoS benefits

and minimizes the costs in terms of PLR and energy consumption. For each positive

ideal solution A+ and negative ideal solution A−, normalized weight rating vx,y can be

determined using the following equations:
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vx,y = wx,lax,y, with x ∈ {1, ...,m}, y ∈ {1, ..., n} (III.7b)

A+ = (v+
1 , v

+
2 , ..., v

+
n ) (III.7c)

A− = (v−
1 , v

−
2 , ..., v

−
n ) (III.7d)

where Vy value results using equations

V +
y =

{
max

x
vx,y, y ∈ Y1; min

x
vx,y, y ∈ Y2

}
(III.7e)

V −
y =

{
min

x
vx,y, y ∈ Y1; max

x
vx,y, y ∈ Y2

}
(III.7f)

where Y1 and Y2 respectively respect benefit and cost criterias. We calculate next

the euclidean distance from the positive ideal solution and negative ideal solution of each

alternative; respectively as follows:

d+
i =

√√√√
n∑

j=1

(d+
i,j)2 (III.7g)

d−
i =

√√√√
n∑

j=1

(d−
i,j)2 (III.7h)

where d−
x,y = V +

y − vx,y, with x = 1, ...,m and d−
x,y = V −

y − vx,y, with x = 1, ...,m.

ζx =
d−

x

d+
x + d−

x
(III.7i)

We finally rank the configurations according to the relative closeness previously calcu-

lated and we assign each device with the configuration that provides the highest value

ζx due to its closest position to the positive ideal solution.

59



CHAPTER III. JOINT QOS AND ENERGY AWARE OPTIMIZATION
IN LORA NETWORK SLICING

III.4.2 Complexity Analysis

We evaluate the complexity of the proposed algorithm briefly listed in Pseudo-code 4

compared to other configuration methods implemented in this study.

Pseudo-code 4 Adaptive Slicing and (SF-TP) Configuration
Input : Capacities cm; Number of slices L;

Set of Throughput Requirements Tl

1 begin
2 Put slices in decreasing order based on priority spl

for each GW m do
3 for each slice l ∈ L do
4 Apply MLE based on the throughput required by slice

l members in the range of GW m.
Define slicing rate Θl.
Reserve bandwidth capacity cl,m.

5 end
6 end
7 for each GW m do
8 for each slice l ∈ L do
9 Apply GMM to define Wl,n of each objective.

10 end
11 end
12 Sort devices in Kl,m based on urgency factor uk.

for each device k ∈ Kl,m do
13 Sort channels in Cl,m based on link budget.

for each Channel c in Cl,m do
14 if config=false then
15 Apply TOPSIS to define (SF-TP) parameters:

SFk,TPk=TOPSIS(wl,1, .., wl,n)
16 else
17 config=true;

Configure the device with SFk and TPk.
18 end
19 end
20 end
21 end

Output: Set of resources reserved for each slice l.
(SF-TP) parameters configuration for each device k.

One primar method (static) is to statically configure all the devices with the same

SF and TP configuration. The latter has a constant complexity of O(1) due to its

simplicity. Similarly, same complexity analysis is applied for dynamic random (DR)

and dynamic adaptive (DA) methods because in DA, centralized LoRa servers assign
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a specific TP value based on the SF assigned for the device. The latter is determined

based on the distance between the device and its closest GW. Whereas in DR, the

controller randomly select SF and TP values for all IoT devices in the network. The

complexity of the proposed dynamic algorithm supported by (TOPG) is compared to the

one supported by an optimal method (optimal). The latter includes a complete TOPSIS

algorithm where all alternatives are tested with each including a different combination

of SF and TP parameters. The complexity of the optimal algorithm is calculated as

follows: an attribute normalization and weighting which result is O(n2), the algorithm

complexity ranking which result is O(1), the complexity of a positive-negative ideal

solution and the distance to alternative solutions is O(n). Hence, the overall complexity

of the optimal and the proposed TOPG configuration is O(n2) [51]. However, instead

of testing all possibilities of SF and TP configurations with the optimal algorithm,

complexity is reduced in TOPG because the server reduces the search space to SF

values that respect the guaranteed bit rate threshold. This reduces computation time

without highly affecting QoS performance as will be shown in the following section.

III.5 Simulation Results

In uplink, centralized LoRa servers enable the opportunity to make efficient slicing de-

cisions and optimum parameters configuration based on the knowledge of the data in

the buffer of each LoRa device. We implemented our methods in the open source NS3

simulator [83] using LoRa model that was firstly developed by authors in [73]. The first

section of Table III.1 gives a brief of LoRa parameters implemented in this work. Sim-

ulations are replicated 50 times with 95% confidence interval and are realized in realistic

LoRa scenarios. We assume that devices are defining a random time for transmission

but periodically uploading small packet payloads of 18 Bytes following to the work done

in [10]. LoRa devices and gateways are both placed over a cell of 7.5 KM radius based

on a uniform random distribution. Each device is configured with spreading factors that

varies from 7 to 12 when uploading traffic to LoRa GWs. Each GW is characterized by

8 receiving channels wih each channel having a bandwidth of 125 kHz in the 867-868
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MHz european sub-band.

The second section of Table II.1 summarizes LoRa energy model parameters. Based

on the Eq. III.8 below [83], we seek to evaluate the energy consumed when we increase

the number of LoRa devices in each slice.

Ek,l,m =
ptx

i + prx
i

V + epa
.dtx/rx (III.8)

where Ek,l,m is the energy consumed by an IoT device, V the LoRa supply voltage,

epa the amplifier’s added efficiency, dtx the duration of transmission, prx
i the power of

reception and ptx
i the power of transmission that varies between 2 and 14 dBm depending

on the configuration strategy adopted. We integrate an energy module for the LoRa

module in NS3 similar to the one that already exists for Wifi and we applied energy

parameters and the power model specified for LoRa in [10] and [15]. In the following, we

start by a proof of isolation and we highlight the importance of finding proper SF-TP

combination with a parameters study in which we focus on showing the impact of SF

and TP on energy consumption, mean PLR and the percentage of devices that respected

GBR and PDB.

III.5.1 Parameters Study

In this section, we investigate the performance of each slice when we put in place dif-

ferent SF-TP configuration strategies for a fixed number of 300 devices. We first study

static configurations in which all devices in the cell are configured with one of the follow-

ing SF-TP combinations (i.e., SF7-TP2, SF8-TP5, SF9-TP8, SF10-TP11, SF11-TP14

and SF12-TP14). Then, we study the impact of TP variation for static configuration

compared to three types of dynamic configuration strategies namely, DR where each

device randomly picks a SF and TP values, DA where each LoRa device dynamically

adapts device parameters to one of the SF-TP configurations depending on the highest

receiving power measured from the gateway and we compare them with TOPG where

dynamic slicing is supported with the proposed GMM and TOPSIS optimization.
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Simulation Parameters

Simulation Time 600 seconds

Slicing Interval Time 50 seconds

Cell Radius 7.5 KM

Number of replications 50

LoRa devices and GWs distribution Random Uniform

Propagation loss model Log-distance

Bandwidth 125 kHz

Spreading Factor {7,8,9,10,11,12}

Confidence intervals 95%

European ISM sub-band 863-870 MHz

Power Consumption Parameters [10] [15]

Battery Maximum Capacity 950 mAh

LoRa Supply Voltage 3.3V

Amplifier Power’s added Efficiency 10%

Connected (Tx/Rx-SF7 to SF12) 1.58 to 25.11 mW

Standby 0.09 mW

Sleep 0 mW

Table III.1: Chapter III simulation parameters

III.5.1.1 Proof of Isolation

The very first step before investigating the strategies that can be used to configure SF

and TP parameters is to prove the isolation concept between virtual slices in LoRa.

Assuming that all devices are transmitting with the same DA configuration, we consider

a single LoRa GW scenario in which we fix 20 LoRa devices for URA slice and we

increase the number of devices. Therefore, all the devices that are left are assigned now

to RA and BE slices. Fig. III.4 proves the isolation concept because when the number

of devices increases in RA and BE slices, URA slice members were not affected and the

percentage of PLR remained constant and nearly null whereas PLR increased in RA and

BE slices in a more congested scenario.
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Figure. III.4: Proof of isolation

III.5.1.2 Parameters study with Static SF-TP Configuration

Performance comparison between various static configuration strategies is summarized

in Table III.2 below and evaluated in terms of QoS for a fixed packet transmission

interval. When static configurations are adopted, all devices in the cell are configured

with one of the following SF-TP combinations (i.e., SF7-TP2, SF8-TP5, SF9-TP8, SF10-

TP11, SF11-TP14 and SF12-TP14). Results show that increasing the SF improves QoS

metrics in terms of throughput and delay except for SF11 and SF12 where performance

degrades tremendously. With high SF configurations, sensitivity is improved but the

energy increases as well because with this configuration IoT devices occupy the spec-

trum for the longest time on air. This explains the increase in PLR and the probability

that packets with same SF interfere upon transmission. However, with small SF con-

figurations, energy is reduced with an improved QoS performance compared to high SF

configurations. However, more than 50 % are lost due to lack of sensitivity, which means

that a large number of packets are lost because they were not successfully received and

decoded by the gateway.

Regarding QoS, increasing the SF reduces the throughput and increases the trans-

mission delay. This explains why the percentage of devices that respect PDB decreases
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due to the increase in transmission delay. However, knowing that throughput decreases

when SF increases, it is noteworthy to mention that the percentage of devices that re-

spect GBR is not affected and improves with SF. This is because a higher SF with

higher TP helps more devices to deliver the required throughput while improving at

the same time packets sensitivity. This clearly explains the low values in PLR and

highlights the trade-off that some configurations deliver in terms of QoS, reliability and

energy. Therefore, we pursue this study with (SF9 − TP8) configuration due to its

trade-off performance that this configuration provides between QoS, energy consump-

tion and having the best overall PLR% between the ones simulated with static strategies.

Slice Name
Static

SF7-TP2 SF8-TP5 SF9-TP8 SF10-TP11 SF11-TP14 SF12-TP14

Devices that respect GBR (%) Overall 2.9 6.21 14.65 23.08 0 0

Devices that respect PDB (%) Overall 41.15 30.7 13.85 12.3 0 0

Mean Packet Loss Rate (%)

Overall 78.37 58.68 20.46 23.73 47.73 70.89

URA Slice 6.94 6.80 10.23 3.33 5.33 5.94

RA Slice 10.34 10.89 16.91 10.50 10.61 18.22

BE Slice 82.71 82.31 72.87 86.16 84.07 75.84

Mean Energy Consumption (mJ)

Total 0.06 0.2 0.73 1.47 3.99 4.41

URA Slice 0.01 0.04 0.16 0.28 0.67 0.74

RA Slice 0.02 0.06 0.23 0.55 1.07 1.47

BE Slice 0.03 0.1 0.35 0.64 2.26 2.21

Table III.2: Parameters study with static SF-TP configurations strategies

III.5.1.3 Parameters study with Dynamic SF-TP Configuration

After defining (SF9 − TP8) as the best static configuration, we compare the latter to

dynamic configurations. First, we highlight in this study the impact of increasing TP

for static configurations before comparing its performance to DA, DR and the proposed

TOPG method. Based on the results shown in Table III.3 below, one can conclude

the importance of efficiently identifying TP parameter due to its direct impact on QoS

performance metrics. The results of each slice show the efficiency of URA compared to

RA and BE slices in terms of reliability and energy consumption due to slicing priority

consideration in MLE resource reservation mechanism.
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Slice Name
Static-SF9 Dynamic

TP2 TP5 TP8 TP11 TP14 DR DA TOPG

Devices that respect GBR (%) Overall 6 9.35 14.65 23.04 37.67 7.65 16.75 60.99

Devices that respect PDB (%) Overall 0.45 1.7 13.85 19.32 29.86 76.3 85.73 94.8

Mean Packet Loss Rate (%)

Overall 61.77 45.96 20.46 12.3 9.59 20.86 12.26 4.37

URA Slice 6.85 8.75 10.23 9.45 3.27 12.32 0.67 6.18

RA Slice 15.54 16.00 16.91 15.24 5.84 23.69 0.97 11.13

BE Slice 77.61 75.24 72.87 75.31 90.89 64 98.37 82.69

Mean Energy Consumption (mJ)

Total 0.18 0.37 0.73 1.46 2.91 3.53 1.04 1.8

URA Slice 0.04 0.08 0.16 0.31 0.62 0.64 0.22 0.25

RA Slice 0.06 0.12 0.23 0.46 0.92 1.1 0.33 0.49

BE Slice 0.09 0.17 0.35 0.69 1.38 1.80 0.49 1.06

Table III.3: Complete Parameters Study with static and dynamic SF-TP configuration
strategies

Increasing TP for SF9 configuration will increase packets arriving above sensitivity

and improves the rate of devices that guaranteed delay and throughput on the expanse

of energy consumption. This highlights the motivation for optimizing SF and TP param-

eters and the utility to sometimes increase TP for an IoT device, if the latter improves

its QoS with respect to GBR and PDB thresholds defined for the slice it belongs to.

Based on what was previously mentioned, IoT devices are configured with the highest

TP for static (SF9 − TP14) configuration because it gives the best QoS performance

for LoRa slices. The latter will be evaluated in depth in the following section compared

to DA, DR and the proposed TOPG methods.

Regarding dynamic configurations, DA was the best strategy in terms of energy com-

pared to DR and TOPG because in DA, the centralized server dynamically configures

LoRa devices with one of the SF-TP combinations defined by LoRa. It measures the

receiving power that a GW gets from the device depending on its position and con-

figure the parameters accordingly. The advantages that dynamic configurations brings

to LoRa are two-fold: first, depending on how far the device is from the gateway, a

smaller distance requires a smaller SF configuration which also mean smaller TP and

energy consumption. Secondly, the fact of adopting different SFs configuration reduces

the probability of collisions and the percentage of packets lost due to interference. How-

ever, similar to static configurations, DA is weak in terms of QoS. This is also due to
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unefficient SF-TP distribution where it could be useful to improve QoS by keeping the

same SF with higher TP value instead of increasing both SF and TP as it’s done in DA

method. Moreover, when devices are close to the gateway, it could be also interesting

to reduce the TP to save energy without degrading QoS performance of IoT devices.

TOPG results in Table III.3 clearly show the potential that this method brings and

requires further evaluation in complete simulations due to the trade-off results that were

achieved in terms of QoS, reliability and energy consumption.

III.5.2 Performance Evaluation of SF-TP Configurations

Following to previous simulation results, we focus in this section on evaluating the pro-

posed TOPG configuration method that proved its worthiness for this study. We run

now simulations starting by 100 devices over a network of four gateways managed by

a centralized LoRa server and we increase the number of devices until the maximum

number connected to a single gateway is reached and limited to 1000 devices, as shown

in the scalability study in [55]. A load of one is emulated due to the legal duty-cycle

limitations of 1% in the European region [5].

Figure. III.5: Total energy consumption variation

III.5.2.1 Total Energy Consumption

In Fig. III.5, when the number of devices increases, the total energy consumed increases

as well regardless of the adopted SF-TP configuration. DR scored the highest energy
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consumption whereas DA was the most energy efficient method because it configures for

each device the minimum TP required. Moreover, it is normal that TOPG algorithm

consumes more energy because it configures SF and TP parameters while also considering

QoS requirements of IoT devices in each slice.

(a) URA slice (b) RA slice

(c) BE slice

Figure. III.6: Mean energy consumption in each slice with different SF-TP configurations

For further investigation, energy consumption is evaluated in each slice which also

increased when the number of LoRa devices increases. In Fig. III.6a, URA slice mem-

bers scored the lowest energy consumption between the simulated slices. The reason for

this result is due to the higher impact that SF parameter provides by letting IoT de-

vices occupy the spectrum for a smaller duration of time even if configured with higher

TP values. This also explains why even in RA and BE slices, TOPG always had a
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higher energy consumption than DA and lower than DR and static configuration meth-

ods. RA and BE slice members consumed more energy compared to URA as shown in

Fig. III.6b and Fig. III.6c respectively. This returns to GMM method that considers

a slice-based configuration that gives higher importance for reliability and QoS in util-

ity calculations. Hence, a higher weight is provided for QoS and reliability that forces

delay-sensitive devices to take the most reliable gateway with the lowest SF-TP values

compared to RA and BE slice members.

III.5.2.2 Packet Loss Rate

In this section, packet loss rate for each configuration algorithm is evaluated. Results

shown in Fig. III.7 prove the efficiency of the proposed optimization method in reducing

PLR compared to static and dynamic configuration strategies. With static (SF9−TP14)

configuration, PLR reached more than 30 % of packets due to congestion. However, the

worst result was scored with DR method where IoT devices lost approximately 40 % of

their packets due to wrong configurations that lead to intra-SF and inter-SF collisions.

The optimal configuration had the lowest PLR percentage between the simulated strate-

gies but with higher complexity compared to the proposed TOPG configuration. This

puts the latter as a trade-off solution between performance and computation time.

Figure. III.7: PLR variation

We also look towards mean PLR results in URA, RA and BE slices illustrated

in Fig. III.8a, Fig. III.8b and Fig. III.8c respectively. Here, URA and RA slice
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members requiring urgent and reliable communications are more prioritized in terms

of resource reservation than the best effort slice resulting lower PLR regardless of the

method adopted for SF-TP configuration. This returns to the efficiency of the estima-

tion method that avoids resource starvation and dynamically reserves physical channels

on LoRa gateways following to the throughput requirements of each slice members. Ad-

ditionally, the efficiency of the proposed configuration method can also be concluded

which gave the lowest PLR with TOPG with a rate that did not bypass 20% in URA

and RA slices and 30% in the BE slice.

(a) URA slice (b) RA slice

(c) BE slice

Figure. III.8: Mean PLR in each slice with different SF-TP configurations
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III.5.2.3 Percentage of Unserved devices in Delay

In Fig. III.9, static configuration had the worst results with 15% of devices that did

not respect their delay thresholds. Results of DR and static configurations were nearly

similar and return to their static and random configuration nature that do not take

into consideration the link quality neither QoS requirements of IoT devices. With DA

configuration, IoT devices had much better results compared to the previous configura-

tions with a rate that did not exceed 10% of the devices violating their delay thresholds.

However, unlike DA where the controller jointly increases or decreases SF-TP combi-

nation for an IoT device, the proposed TOPG algorithm searches for the best SF-TP

combination based on the objectives and the weight defined by GMM method. TOPG

sometimes modify TP for a device instead of increasing both SF and TP parameters like

in the case of DA configuration. This explains the slight improvement and the decrease

in the percentage of devices that violated their PDB in TOPG with less computation

complexity than the optimal configuration.

Figure. III.9: Percentage of unserved nodes in delay
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III.5.2.4 Percentage of Unserved devices in Throughput

Further improvement in throughput is achieved in Fig. III.10 where TOPG came as

the second best configuration method behind the optimal algorithm. The former scores

nearly similar results with less computation time. With both TOPG and optimal algo-

rithms, the rate of devices that did not guarantee their throughput did not exceed 30%

even in a very congested scenario. This mainly highlights the efficiency of using TOPSIS

instead of testing all SF and TP combinations. Moreover, static and DR configurations

had the worst results with a rate that exceeded 50% of the devices that violated the

GBR defined in each slice. With DA, smaller SF values provide an achievable through-

put that can be sometimes very high compared to the one that needs to be guaranteed.

This is also true with smaller SF parameters where in both cases, an IoT device with

DA configuration is assigned a specific TP for each SF parameter. However with the

proposed algorithm, TOPG provides the guaranteed throughput with an efficient SF or

TP variation. With TOPG optimization, a proper SF and TP combination is found

that guarantees throughput while saving lots of energy for each slice members.

Figure. III.10: Percentage of unserved nodes in throughput
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III.6 Conclusion

This chapter highlights the utility of supporting the adaptive dynamic slicing strategy

with a slice-based parameters optimization that searches for the best SF and TP con-

figuration for each device depending on the slice that it belongs to. Results show major

improvement in terms of QoS, reliability and energy consumption when each device is

configured with the proper SF and TP combination. More specifically, the rate of packets

lost decreases from 50% to less than 30 % for the same number of IoT devices. However,

it is expected that the number of devices will increase and bypass 1000 devices, found to

be the maximum capacity in the scalability study realized by authors in [55]. LoRaWAN

will suffer from congestion when the number of devices increase in the network. Hence,

we believe that centralized servers will practically face major difficulties in managing and

properly isolating Lora slices as well as configuring each IoT devices with the proper pa-

rameters configuration. Hence, the goal in the next chapter is to propose a distributed

strategy supported by SDN which should meet scalability and capacity requirements of

LoRaWAN in large scale IoT deployments.
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IV.1 Introduction

A fter evaluating in Chapter II the assets and the usability of network slicing

in guaranteeing QoS for LoRa devices in terms of urgency and reliability, we

have shown next, in Chapter III, that further improvement can be reached if an opti-

mized SF and TP distribution is taken into consideration. However, due to the vast

popularity that IoT is gaining, estimations forecast that 20 to 30 billion IoT devices

will be connected by 2022 [36]. There is some doubts about how to deal with the rapid

development of LoRaWAN knowing that the current LoRa architecture won’t be capable

of supporting upcoming scalability challenges in large scale LoRa deployments despite

the advantages brought to LoRaWAN with our previous contributions.

In [77], Mikhaylov et al. present an analytical scalability analysis that measures the

maximum throughput that can be transmitted by a single LoRa device. The capacity

of the latter is analyzed by Augustin et al. in [5] as the superposition of independent

ALOHA-based networks. Moreover, Bora et al. in [14] performed practical experi-

ments to study the limit on the number of transmitters supported in LoRa based on

an empirical model and built LoRaSim simulator with the goal of studying LoRaWAN

scalability. Unlike [14], Van den Abeele et al. in [115] adopted the LoRaWAN MAC

protocol in NS3 module to analyze its scalability with thousands of end devices and

showed the impact of downstream traffic on packet delivery ratio (PDR) of confirmed

upstream traffic. In [89], Petajajarvi et al. showed that LoRa scalability can be im-

proved using an optimized configuration of LoRa parameters (spreading factor (SF),

transmission power (TP) and coding rate (CR)). Any misconfiguration of one of these

parameters will lead to degradation in PDR and unfairness in LoRaWAN [94] network

performance. The current cloud-based server cannot meet scalability challenges in prop-

erly allocating network resources and configuring IoT devices as their number in the

network increases. Hence, flexibility in managing network resources is required using

emerging technologies in IoT, namely network slicing and software defined networking

(SDN), to provide heterogeneous QoS requirements through isolated End-to-End (E2E)
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network slices and an optimized resource allocation and network configuration strategies.

Knowing that SDN in itself is not the solution for the slicing problem, it provides the

potential of enabling simplified resource management, distributed control and communi-

cations between LoRa GWs. The crucial role that SDN plays in improving IoT network

is highlighted in the literature in terms of security [40], improving transmission quality

[110] and scalability through cloud-based solutions [113]. However, even with SDN, it

is impractical to assume that the centralized network server is capable of acknowledg-

ing messages received from billions of devices given their limited physical bandwidth

and computational capacity [48]. Luo et al. in [71], proposed an SDN-based testbed

with semi-centralized and distributed SDN control for underwater wireless sensor net-

works. Moreover, Reynders et al. [96] proposed a distributed scheduling solution to

improve LoRaWAN reliability and scalability. Hence, decentralized optimizations could

be the solution for this slicing problem. There has been previous attempts to evalu-

ate decentralized architecture in LoRaWAN. Lin et al. proposed in [68] a conceptual

architecture design of a blockchain built-in solution for LoRaWAN servers to improve

network coverage and build the trust of private network operators. Moreover, Durand

et al. improved in [32] LoRaWAN security and its resilience against threats by practi-

cally implementing decentralized LoRa architecture using a blockchain-connected packet

forwarding application. In [88], Pankratev et al. compared IoT technologies for data

exchange in decentralized systems and highlight the advantages of using distributed ar-

chitecture using Bluetooth, ZigBee and WiFi technologies but scheduled decentralized

LoRaWAN for their future research work.

In large scale IoT, devices cannot be controlled by a single network entity. Hence,

due to the lack of information for a GW regarding IoT devices managed by the other

GWs, game theory can be used, as a popular framework [53], to effectively analyze the

interactive decision making of GWs with conflicting interests [103]. Each GW tries to

find the best resource reservation strategy for its virtual slices and the best parameters

configuration for devices in its range. Multiple works proposed game-theoretic models
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Figure. IV.1: The proposed distributed multi-game for slicing admission, resources reser-
vation and resources allocation

to optimize resource management problems in distributed systems. Gu et al. [47] tack-

led radio and computational resource allocation problem to optimize users satisfaction

and improve network performance in IoT fog computing. In [17], Bui et. al propose an

optimization method for smart traffic lights control and improve traffic flow in real time

by applying game theory. Touati et al. [112] proposed a matching game approach for

mobile user association and resource allocation in IEEE 802.11 wireless networks. More-

over, a distributed resource allocation and orchestration approach is proposed by Doro

et al. [33] to allow dynamic and flexible resource management in softwarized networks.

Chen et al. [20] formulated two resource management games and proposed distributed

algorithms to optimize link selection and power allocation and improve network local-

ization. However, few works addressed resource management problem in LoRaWAN,

Sharma et. al in [105] optimized resource allocation among available network servers by

forming self-enforcing agreement via game theory modeling. Moreover, Haghighi et. al

proposed in [49] a GW-centric distributed approach for radio selection based on game

theory to minimize energy consumption at LoRa sensor nodes.

Unlike our previous contributions in Chapter II and Chapter III where we tackled

resource reservation problem in centralized LoRa architecture. In this chapter, we will

try to prevent potential challenges that may appear due to the increasing congestion in

large scale IoT deployments by leveraging computational intelligence to LoRa gateways
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and moving closer to the edge. This should improve network performance and reduce

computational complexity in next generation IoT networks. The proposed multi-game

slicing admission control, resource reservation and resource allocation is illustrated in

Fig. III.3. Our main contributions with respect to the surveyed literature are stated

as follows:

1. We propose a coalitional game (GAME 1) where LoRa GWs coordinate to im-

prove network reliability. GWs assign devices to the requested slice and compete

when assigning cell edge devices to the most efficient virtual slice. This game

provides a better flexibility in managing traffic coming from heterogeneous IoT

applications and guarantees their required QoS with complete isolation between

each virtual slice.

2. We formulate the slicing problem as a Bankruptcy game (GAME 2) and propose

an inter-slice resource reservation that builds on previous matching game results.

Here, on each GW, coalitions including slice members compete for gaining access

to LoRa physical channels. The goal of this scheme is to avoid channels starvation

by providing fair resource reservation for each slice.

3. We propose an intra-slice resource allocation based on one-to-one matching theory

(GAME 3) with optimized configuration. In each slice, the proposed method

efficiently configures SF and TP parameters for a device before being assigned to

a LoRa channel.

The remainder of this chapter is organized as follows. We devote Section IV.2 for

describing the distributed SDN-based network slicing architecture for LoRaWAN and

defining the network slicing model. In Section IV.3, the multi-objective network slicing

problem is established with respect to various constraints. Section IV.4 presents the

coalitional multi-game theory proposed for resource reservation and supported by an

optimized slice-based resource allocation algorithm. The latter is simulated over the

LoRa module of NS3 simulator [73] before evaluating its performance and analyzing

simulation results carried out through various scenarios in Section IV.5. Finally, Section

IV.6 concludes the paper.
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IV.2 Distributed SDN-based architecture for IoT

In this section, we first present the distributed SDN-based architecture compared to

the centralized non-SDN LoRa existing actually in the IoT market. Similar to previous

chapters, virtual slices are next defined and integrated in densified LoRa networks before

finally presenting the slicing system model.

IV.2.1 LoRa SDN-Based Architecture

In Fig. IV.2a, the standard LoRa architecture is illustrated and is originally designed

as centralized and non-SDN architecture in which End-to-End (E2E) network slicing can

be implemented and managed by the centralized network server with a global overview

of the network. The latter is responsible for estimating and reserving physical resources

on LoRa GWs for each slice based on QoS requirements of IoT devices. However, in

large scale dense deployments, network complexity significantly increases which degrades

network performance specially when more edge devices are positioned in the range of

multiple GWs simultaneously. Hence, communication reliability decreases leading to an

increase in packets loss due to interference and misconfiguration of LoRa SF and TP

parameters. This motivates the idea of integrating SDN in a distributed network slicing

and enabling cooperation between LoRa GWs via SDN switches.

With the distributed SDN-based architecture, illustrated in Fig. IV.2b, LoRa ap-

plication servers are replaced by application program interfaces (APIs) to provide effi-

cient communication regarding which IoT services and applications LoRaWAN should

be providing. SDN simplifies network management and enables distributed solutions

for resource and network configurations. In this context, slicing admission control and

resource reservation decisions are delegated to the GWs which cooperate between each

others using game theory framework. Each IoT device randomly runs an application

belonging to one of URA, RA or BE slices previously defined in chapter I and listed in

Table I.5. The GW forms coalitions with devices having similar QoS requirements and

assign each device to one of the channels reserved for his virtual slice.
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(a) Centralized non-SDN architecture (b) Distributed SDN-based architecture

Figure. IV.2: Centralized non-SDN vs Distributed SDN-based network slicing architec-
ture in LoRaWAN

IV.2.2 Slicing System Model

In IoT, we assume that IoT devices are initially associated to the closest gateway in

the network with ADR configuration. The latter does not influence the architecture

but is a mechanism that optimizes LoRa SF and TP parameters based on its power

received from the closest GW. However in ADR, QoS is not considered in each slice in

terms of delay, throughput and reliability. Let M = {m1, ..mm′ ..,mM } be the set of

LoRa GWs that cooperate to optimize network configuration with K = {k1, ..kk′ .., kK}

denotes the set of IoT devices that should be admitted to one of the L virtual slices with

L = {l1, ..ll′ .., lL} grouping Kl,m IoT devices belonging to the same virtual slice on GW

m. Upon resource reservation, GW physical resources are divided and virtually reserved

for each slice l ∈ L having a set of channels Cl,m completely isolated on each GW m ∈ M .

Improving IoT communications requires QoS consideration while decreasing at the same

time energy consumption for each device. Therefore, this requires the formulation of

a multi-objective optimization that considers resource reservation and allocation in a

LoRa network slicing scenario.
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IV.3 Problem Formulation

Optimizing LoRa parameters configuration and resource reservation impacts QoS, energy

consumption and reliability performance for IoT devices belonging to a coalition with

specific slicing priority spl. However, solving this multi-objective problem is proven to

be NP-Hard in similar problems by Amichi et al. [4] for LoRa parameters configuration

and by Liu et al. [69] for channel resources and power allocation. This problem is also

more challenging due to the maximum number of physical channels qm that can be used

for transmission on each GW m. The goal is to first control IoT devices admission

where some of these devices are positioned in the range of multiple GWs. The latter

cooperate to assign these devices to the most appropriate virtual slice before optimizing

the reservation and allocation of channel resources. We consider αk,c ∈ {0, 1} and

βl,m ∈ {0, 1} as two binary decision variables that respectively indicates the admission

of device k to a channel c ∈ Cl,m and the association of a slice l to GW m. Based on

SF and TP configuration, each device k ∈ Kl,m achieves specific throughput and delay

formulated in Eq. IV.1 and Eq. IV.2 below:

rk = SF.
Rc

2SF
.CR with k ∈ Kl,m (IV.1)

dk =
L

rk,c
with k ∈ Kl,m and c ∈ Cl,m (IV.2)

Hence, the first objective is presented in Eq. IV.3 which consists on improving QoS

of a slice when QoS of all its members are also improved based on slice specific thresholds.

Maximize u
Kl,m

QoS

with u
Kl,m

QoS =
∑

k∈Kl,m

αk,c(rk,c + (1 − dk,c)),

∀c ∈ Cl,m,∀l ∈ L,∀m ∈ M

(IV.3)

where u
Kl,m

QoS denotes the QoS metric that measures satisfaction rate of slice l mem-

bers over a LoRa GW m in terms of throughput and delay normalized into rk,c and dk,c

respectively. Configuring the device with lowest SF and TP configurations may lead to
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packet reception errors due to inter and intra-SF interference. The former denoted as

PLR′
k,c, depends on collisions that happen on a GW channel between two devices con-

figured with the same SF based on random access formula [109]. The latter, denoted as

a binary variable PLR′′
k,c, depends on low Signal-to-interference-plus-noise ratio (SINR)

[73] and indicates if the transmitting packet survives interference table [44] that comes

from other LoRa transmissions with each having different SF and TP configurations.

The packet survives interference with all interfering packets if, considering all combi-

nations of SF, a higher power margin value (dB) is satisfied than the corresponding

co-channel rejection value. Moreover, PLR′′′
k,c denotes a binary variable that indicates

if a packet arrives to the GW above or below sensitivity thresholds [73]. The latter is

an additional factor that leads to a loss of a packet due to the lack of sensitivity. Thus,

finding the proper configurations of a device is crucial because increasing SF will also

increase receiver’s sensitivity allowing a packet to be transmitted at a wider range.

Based on what was previously mentioned, we define PSRk,c formulated in Eq. IV.4

below, with the objective of maximizing the packet success rate PSRk,c of a packet

transmitted by an IoT device k ∈ K over a channel c ∈ Cl,m.

PSRk,c = (1 − PLR′
k,c) + PLR′′

k,c + PLR′′′
k,c

with k ∈ K and c ∈ Cl,m

(IV.4)

The second objective is defined in Eq. IV.5 below as maximizing the reliability of a

transmission by optimizing parameters configuration if the latter improves PSRk,c of a

transmission.

Maximize u
Kl,m

Rel

with u
Kl,m

Rel =
∑

k∈Kl,m

αk,cPSRk,c,

∀c ∈ Cl,m,∀l ∈ L,∀m ∈ M

(IV.5)

where u
Kl,m

Rel denotes the reliability metric that slice l members achieve over a LoRa

GW m including sensitivity, inter-SF and intra-SF interference estimations. It is note-

worthy to mention that overestimating SF, TP and CR configurations leads to an increase
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in energy consumption due to the longer activity time for an IoT device when upload-

ing a packet with high SF configuration. Therefore, we also consider energy in utility

calculations based on the power model adopted in [15]. Two energy states for LoRa IoT

device are assumed in which the energy of a transmission is formulated in Eq. IV.6

below and computed based on P tx
k,c and P sleep

k,c power values respectively denoting the

power consumed in active or in sleep mode.

Ek,c = P tx
k,cTactive + P sleep

k,c Tsleep (IV.6)

The problem of minimizing energy consumption is transformed into a maximization

problem following to Eq. IV.7 below:

Maximize u
Kl,m

Energy

with u
Kl,m

Energy =
∑

k∈Kl,m

αk,c(1 − Ek,c)

∀c ∈ Cl,m,∀l ∈ L,∀m ∈ M

(IV.7)

where u
Kl,m

Energy denotes the energy consumed by a slice l over a LoRa GW m includ-

ing Ek,c, the normalized energy value of a packet that varies depending on SF and TP

parameters configuration.

According to the multi-objective problem, QoS, reliability and energy objectives are

turned into a single objective function with the goal to maximize the global utility value

of each GW m. The latter is shown in Eq. IV.8 below and formulated in subject to the

constraints below:

Maximize Um

with Um =
∑
l∈L

βl,m(u
Kl,m

QoS + u
Kl,m

P SR + u
Kl,m

Energy),

∀m ∈ M

(IV.8)

C1 :
∑

c∈Cl,m

αk,c = 1,∀k ∈ K (IV.9a)
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C2 : Kl,m ∩Kl′,m = ∅,∀l, l′ ∈ L,∀m ∈ M (IV.9b)

C3 : Kl,m ∩Kl,m′ = ∅,∀l ∈ L,∀m,m′ ∈ M (IV.9c)

C4 : Cl,m ∩ Cl′,m = ∅,∀l, l′ ∈ L,∀m ∈ M (IV.9d)

C5 : 0 ≤ Pk,c ≤ Pmax
k ,∀k ∈ K,∀c ∈ Cl,m (IV.9e)

C6 :
∑

kǫK

αk,cβl,mrk,c ≤ Rmax
c ,∀l ∈ L,∀m ∈ M,∀c ∈ Cl,m (IV.9f)

Knowing that multiple virtual network slices are built on top of a common physical

gateway, (IV.9a) ensures that each device should always choose exactly one and only

channel reserved for a virtual slice l ∈ L on GW m. (IV.9b) and (IV.9c) controls the

formation of coalitions upon IoT devices admission into virtual slices. The former guar-

antees that two coalitions of devices belonging to slice l and l′ do not have common IoT

devices in the range of GW m whereas the latter guarantees that IoT devices belonging

to the same slice l cannot be shared between two LoRa GWs m,m′ ∈ M . Moreover,

perfect isolation is guaranteed in (IV.9d) between two set of physical channels belonging

to different slices l, l′ ∈ L over a GW m. The transmission power of each device is

limited in constraint (IV.9e). And finally, constraint (IV.9f) guarantees that the sum

of uplink traffic sent by slice members do not exceed the maximum data rate capacity

of the slice that can be sent through each gateway. All the constraints previously men-

tioned should be respected by each GW in the following multi-game proposition. Due

to lack of information between GWs in large scale LoRaWAN, a cooperative multi-game

is next proposed to maximize the utility function of each GW when optimizing slicing

admission, inter-slice resource reservation and intra-slice resource allocation.
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IV.4 Proposed Approach

In this section, the proposed multi-game slicing admission control, resource reservation

and resource allocation are summarized and illustrated in Fig. IV.1. The first step

is formulated as a cooperative slicing admission based on one-to-many matching game

to define how IoT edge devices are assigned to virtual slices and GWs. The result of

the game is used as an input for Bankruptcy game to reserve physical channels on GWs

based on throughput requirements of each slice members. Each GW virtually splits its

bandwidth between various networks that are isolated with each having heterogeneous

degree of importance in terms of QoS, energy and reliability. After reserving channels

for each slice, an inter slice resource allocation based on one-to-one matching game is

formulated between the set of channels reserved for a slice and its IoT devices members.

IV.4.1 Cooperative Slicing Admission via Matching Theory

A key problem in dense IoT deployments is mainly found in the edge of each cell where

IoT devices are located in the range of multiple GWs simultaneously. However, the

received power could not be considered as the only metric for devices slicing admission

specially in large scale deployments where congestion increases and more packets are

lost due to interference. Hence, finding the proper device configuration has a major

impact on communications reliability and the probability of loosing a packet due to

inter or intra-SF interference [95]. Therefore, based on the configuration of each device,

cooperation between GWs becomes mandatory to control slicing admission where it may

be useful to transfer a device initially from GW m to GW m′ while keeping it assigned to

the same virtual slice l ∈ L if this move improves the probability of successfully decoding

its packet. The slicing admission control problem is formulated to a college admission

problem, introduced in [42], and resolved based on one-to-many matching theory. In this

framework, three components are needed: 1) the set K of IoT devices acting as students;

2) the set M of LoRa GWs acting as colleges, and 3) the preference relations for IoT

devices and GWs which are built based on the preferences over one another. IoT devices

can be initially in the range of multiple GWs with the latter having a fixed quota ql,m
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on the number of channels that can be reserved for each slice. However, upon stability,

each device has the possibility of being assigned to one virtual slice l on GW m. LoRa

GWs forms initially L coalitions including IoT devices with the highest metric in each

slice l ∈ L.

Pseudo-code 5 Cooperative Slicing Admission algorithm based on one-
to-many matching theory
Input : Set of gateways M and slices L; Set of devices K;

Set of channels Cl,m;
1 begin
2 Construct KLISTk,l,m,∀k ∈ Kl, l ∈ L and m ∈ M

Construct GWLISTl,m,∀l ∈ L and m ∈ M
while K devices are not on waiting lists do

3 for each GW m in M do
4 Receive preference of K for each slice l

GW m creates new waiting list including best devices between
the preferred and new applicants based on ql,m

GW m rejects the rest of devices

5 end
6 end
7 Each GW m ∈ M forms Kl,m coalitions in Spartial.

Spartial={K1,m,Kl′,m,...,Kl,m}.
LoRa GWs cooperate to transfer IoT devices.
while Stable Sfinal not found do

8 Preferred transfers of devices are indicated to GWs
for each GW m in M do

9 Receive transfer request of k to slice l on GW m′

if Ul,m′ > Ul,m then
10 Transfer device k from slice l on GW m to slice l on GW m′.
11 else
12 IoT device remains assigned to the same coalition Kl,m.
13 end
14 end
15 end
16 end

Output: Stable matching Sfinal of coalitions including Kl,m devices as-
signed to slice l ∈ L on GW m ∈ M .

The following matching game is modeled and summarized in the Pseudo-code 5

with the goal to prove that a stable matching can be found between GWs and IoT

edge devices. LoRa GWs cooperate to maximize the utility value of IoT devices by

assigning edge devices to the slice l on GW m that offers the maximum reliability and
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respects QoS thresholds of the corresponding slice. Each GW m ∈ M has an objective to

reduce congestion and to form coalitions for each slice members in a way that maximizes

its utility Um. To resolve this slicing admission game, a preference relation � is first

defined as a binary relation over the coalitions of devices belonging to a slice l ∈ L on

GW m ∈ M . Based on these preferences, IoT devices and GWs can rank one another.

Each GW m ∈ M defines a preference relation set KLISTk,l,m over the set of devices

which are members of coalitions Kl,m, such that, for two devices k, k′ ∈ Kl,m and k 6= k′,

the following Eq. IV.10 is approved:

k �m k′ ⇐⇒ Um(k) ≥ Um(k′) (IV.10)

where Um(.) is given by the utility computed for a device k which is affected by

the other devices that exists in Kl,m (line 3). Moreover, the preference relation set

GWLISTl,m which ranks LoRa GWs based on the utility that depends on the configu-

ration adopted by each device (line 3) and evaluates its utility metric in terms of QoS,

reliability and energy consumption. The primary stable matching solution Sprimary is

found with the deferred acceptance method of Gale and Shapely [42] repeated until there

is no pair of devices k, k′ ∈ K assigned to slice l on GWs m ∈ M and m′ ∈ M respec-

tively, although k prefers m′ to m, i.e. m′ �k m and k′ prefers m to m′, i.e. m �k′ m′

(line 4-7). However, due to the dependency between the preferences of the students,

the possibility to find an acceptable and a stable solution for the one-to-many matching

game becomes more complex [100]. Hence, transferring a device from a coalition to an-

other while keeping the device assigned to the same virtual slice is proposed to overcome

this challenge. The transfer of devices between virtual slices is defined based on the

framework of the coalitional game theory [53]. The latter is a pair (N,V ) where:

• N is the finite set of players, i.e. IoT devices.

• V is the mapping that assigns devices for every coalition Kl,m that groups devices

belonging to slice l on GW m with Ul,m denotes the utility value of each coalition.

The objective of this game is to enable the opportunity for LoRa GWs to cooperate and

to make a decision on accepting or refusing to transfer the device from Kl,m to Kl,m′ if
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the latter improves the utility of both coalitions (line 8-17). The process is proven to

convert to a final solution Sfinal [101] and is repeated until convergence. Sfinal includes

the final coalitions Kl,m of IoT devices assigned to each virtual slice l ∈ L on LoRa GW

m ∈ M (line 18).

IV.4.2 Bankruptcy Resource Reservation game

After defining coalitions of devices that belongs to each slice, each LoRa GW will reserve

a number of channels for each coalition of devices belonging to the same virtual slice

based on throughput requirements of the latter. In other terms, each slice experiencing

higher traffic load requires a higher number of channels compared to the less loaded slice.

However, the number of channels required by the sum of virtual slices is higher than

the number of physical channels that actually exists for each LoRa GW. Therefore, the

resource reservation problem is modeled as bankruptcy situation which tries to predefine

in a fairly manner how to ration the amount of channels among the group of IoT devices

belonging to the same slice with each having different demands in throughput. The key

denotations and description of the bankruptcy game are defined in Table IV.1.

Variable Bankruptcy Game Resource Reservation Game

k Total number of players Total numbers of IoT devices in a range of GW

Kl,m Set of players Set of coalitions including IoT Devices belonging to slice l on GW m

S Coalition in the game Set of coalitions including IoT slice members

X Total money the company owes Total number of channels on GW m

Y Total amount of money claimed by companies Total number of claimed channels by each slice

xi Minimum money needed by each player The number of channels needed by each slice

yi Claimed money of each player Claimed extra channels of each slice

C −
∑

i∈N
bi Money(estate) Total number of additional claimed channels

ψi(v) Solution of money distributed to each player Additional channels reserved for each slice

Table IV.1: Bankruptcy Game description

Based on the bankruptcy problem, modeled as a triple (N,C, g), where N = {1, ..., n}

is the set of players, i.e. coalition of slice members, C represents the benefit, i.e. the total

set of physical channels that are available on LoRa GW m ∈ M , and g = {g1, ..., gn} is

the vector of claims of each coalition of IoT devices. Based on O’Neill approach [87], a

bankruptcy game (N ,v) can be defined for every bankruptcy problem (N,C, g) where v

is a characteristic function with 2n possible coalitions with players in a game. Moreover,
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X is defined as a positive integer, bi denotes the minimum number of channels that each

virtual slice needs to operate and yi the number of channels actually claimed by each

slice members, where
∑

i∈N
bi ≤ X and

∑
i∈N

ci ≥ X −
∑

i∈N
bi. The total amount of money

which the company owns denotes the total number of additional channels claimed by

each virtual slice and is denoted by Y with Y ≥ X−
∑

i∈N
bi. Due to the direct relationship

between throughput requirements and the amount of channels that are requested by each

slice, the number of channels requested increases when slice members requires higher

traffic rate. The rate required by each slice l is denoted as Ri,j , the sum of throughput

requirements of the coalition i including the set of IoT devices j that are members of

Kl,m group. Hence, based on what was previously mentioned, the additional claimed

channels yi for a coalition i ∈ N belonging to slice l ∈ L is obtained through Eq. IV.11

while also respecting Eq. IV.12 below:

yi = (

j=Kl,m∑
j=1

Ri,j

i=N∑
i=1

j=Kl,m∑
j=1

Ri,j

) ∗ (Y − n) + 1,∀i ∈ N, ∀j ∈ Kl,m (IV.11)

∑

i∈N

yi = Y (IV.12)

The characteristic function of this bankruptcy game can be particularly introduced

for all possible coalitions in Eq. IV.13 below [90]:

v(S) = max{o,X −
∑

i∈N
ci −

∑
i/∈S

yj} (IV.13)

where based on Eq. IV.14, no channels are reserved for a virtual slice l on GW m

if it doesn’t have any IoT devices active in the range of the corresponding GW.

v(φ) = 0 (IV.14)

and in Eq. IV.15 below:

v(N) = X −
∑

i∈N
xi (IV.15)
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which indicates that if all devices are member of one coalition, the latter will have

the total number of the extra channels available for reservation.

After computing the characteristic function of all possible coalitions, the stable num-

ber of channels that should be reserved for each virtual slice l on GW m is computed

based on the Shapley value [104]. The latter is a game theory concept which was pro-

posed by Shapley with the goal of finding the fairest allocation of collectively gained

profits between several collaborative players based on the relative importance of every

player regarding the cooperative activities. In this framework, the number of channels

that each slice will get represents the average payoff of the coalition. Hence, the number

of channels reserved of each coalition of devices i with i ∈ N that belongs to slice l ∈ L

is given using function ϕi(v) in Eq. IV.16 below:

ϕi(v) =
∑

S⊂N,i∈N
( (|S|−1)!(n−|S|)!)

n! (v(S) − v(S − i)))

with i ∈ N

(IV.16)

where |S| indicates the number coalitions in the set and

ϕi(v) = X −
∑

i∈N
yi with i ∈ N

IV.4.3 Inter-slice Resource allocation via Matching Theory

After reserving the set of channels for each virtual slice, the output of the bankruptcy

game is brought up to the inter-slice resource allocation phase. Here, each GW is now

aware of the set of channels Cl,m reserved for the coalition of devices that belongs to

slice l ∈ L on GW m ∈ M . To solve this channel allocation problem, a modified

deferred acceptance algorithm is proposed due to the merits that the one-to-one matching

approach brings in providing distributed solution with tractable computation complexity.

The latter is originally defined as a mathematical framework to analyze and optimize the

allocation problem among players and resources. A one-to-one matching game is a two-

sided assignment problem between two disjoint sets of players, in which each individual

of a set has preferences over the individuals of the opposite set where the output of this
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game is an IoT device assigned to one of the channels that were virtually reserved for

his slice. With this strategy, complete isolation is provided between channel resources

of each slice on LoRa GWs. The proposed algorithm for this framework is described in

the Pseudo-code 6.

Pseudo-code 6 Resource Allocation algorithm based on one-to-
one matching theory
Input : Set of gateways M and slices L;

Slice members Kl,m;
Set of channels Cl,m;
Set of quotas Q

1 begin
2 Construct KLISTk,l,m,∀k ∈ Kl,m, l ∈ L and m ∈ M

Construct CHLISTl,m,∀l ∈ L and m ∈ M
Construct NMLISTk with k ∈ W .
while NMLISTk not empty do

3 GW m receives preference of Kl,m IoT devices.
for each device k ∈ Kl,m do

4 Put CHLISTl,m in decreasing order.
Device k makes an offer to first channel in
CHLISTl,m.
if quota ql,m is respected then

5 if c′
l,m is more preferred than cl,m then

6 Keep the preferred channel c′
l,m;

Reject channel cl,m;
Apply TOPG(k, cl,m);
Allocate device k to c′

l,m;
Remove device k from NMLISTk.
Decrease quota ql,m

7 else
8 Keep the preferred channel cl,m.
9 end

10 else
11 Remove k from NMLISTk.
12 end
13 end
14 end
15 end

Output: Set of channels Cl,m allocated in each slice l.

After the end of the bankruptcy game, the algorithm receives the set of channels

Cl,m for each virtual slice l on GW m as well as the quotas ql,m that denotes the

number of channels reserved for each slice. The inter-slice resource allocation algorithm
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is launched between the set of IoT devices and the physical channels that were previously

reserved with respect to the maximum quota of the gateway. The latter executes the

initialization of algorithm and starts by building with preference relations of devices and

physical channels (line 2). The former list is denoted as KLISTk,l,m whereas the latter

is denoted CHLISTl,m. For each slice, all devices that did not match a channel are

stored in a new list denoted as NMLIST (line 2). While devices exist in NMLIST ,

the algorithm propose the most preferred channel to the device with the highest utility

in the slice (line 4-7). This way, the most urgent device is given the highest priority

upon channel allocation. However, in LoRa allocating an IoT device is not enough to

improve QoS of the device because the latter is related to its configuration in terms

of spreading factor and transmission power. This is why configuration of each device

matched to a channel will be optimized with TOPG that was previously proposed in

[29] to optimize SF and TP configuration with respect to the QoS thresholds of the slice

that is assigned to (line 6). Next, the allocated device is removed from NMLIST and

the available quota ql,m for the corresponding slice is reduced by one channel (line 7).

The matching process is repeated for each slice members and ends when NMLIST is

empty (line 11) or when physical channels are completely assigned by IoT devices to

reach a weak Pareto optimal stable matching (line 15) [63].

IV.5 Simulation Results

As most of traffic in IoT comes from uplink communications, we focus more on the up-

link traffic that comes from IoT sensors assigned to one of the virtual slices that were

previously defined in Table I.5. Simulations, replicated 20 times with 95% confidence

interval in realistic LoRa scenarios, are implemented over the open source NS3 simula-

tor [83]. To implement SDN in our simulations, OpenFlow protocol version 1.3 [19] is

adopted alongside the LoRa model proposed by Magrin et al. in [73] using the following

SDN [38] and LoRaWAN [72] source codes on Github. We assume that each GW has

a complete knowledge on the buffer of the IoT devices existing in its range. This as-

sumption has been previously considered by Liu et al. in [70] and showed its worthiness
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in improving energy efficiency and QoS effectiveness in wireless IoT networks. Next,

bankruptcy is applied to reserve channel resources for each virtual slice based on data

transmitted by its members. In this context, GWs cooperate to assign edge devices, then

reserve the bandwidth and apply proper network configuration in a distributed manner.

The latter should improve network performance because GWs will have the ability to

be closer to IoT devices in terms of network slicing management and to adapt faster to

their QoS requirements. Hence, in large scale networks, making slicing decisions at the

GW level reduces complexity due to the cooperation that happens between GWs instead

of transmitting all information to the centralized SDN controller.

In this work, simulations are replicated 20 times with 95% confidence interval in

realistic LoRa scenarios. All application and simulation parameters are summarized

in Table III.1. However, this time we will evaluate the new distributed proposition in

large scale where we increase the number of IoT devices into 5000 devices in the network.

At each replication, devices are distributed based on the uniform random distribution

over a cell of 10 km whereas GWs positions are fixed and spaced 2.5 km apart. Each

GW is characterized by 8 receiving channels with each having a bandwidth of 125 kHz

in the 867-868 MHz European sub-band. Regarding application settings, packets are

transmitted at a random time but in a periodic manner with fixed payloads of 18 Bytes

following to the work done in [10]. LoRa parameter settings are respected with SF

configurations that vary between 7 and 12 and 2 to 14 dBm for TP configurations.

Based on each configuration, the lifetime of a device varies and is evaluated in each slice

using Eq. IV.17 below [86].

Lk,l,m = BCk

Ek,l,m(1−ds)

with Ek,l,m = ptx
i

+prx
i

V +epa .dtx/rx

(IV.17)

where Lk,l,m denotes the battery lifetime of an IoT device k belonging to slice l having a

maximum capacity and a discharge safety ds fixed in this work to 10 % of the maximum

capacity of the battery BCk. Lk,l,m computation depends on the energy consumed by

an IoT device Ek,l,m, V the LoRa supply voltage, epa the amplifier’s added efficiency,
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dtx the duration of transmission, prx
i and ptx

i that finally denote the power of reception

and transmission respectively and vary between 2 and 14 dBm depending on the config-

uration strategy adopted. Using Eq. IV.17 and the energy module that already exists

in NS3 for Wifi, we integrate an energy model for LoRa using the energy parameters

and the power model specified in [10] and [15] respectively.

In the following, the proposed distributed slicing strategy is evaluated over various

parameters configuration methods. The best configuration found will be adopted in a sec-

ond performance study that compares static, probabilistic, centralized and distributed

slicing strategies and evaluates their impact on the battery lifetime, communications

reliability and the percentage of devices that respect throughput and delay thresholds.

IV.5.1 Performance Study with various configurations strategies

In Fig. IV.3, performance results are evaluated in LoRa with the proposed distributed

slicing for a fixed number of 2500 devices. Each simulation is replicated 20 times using

different configurations that assign SF and TP parameters based on static, dynamic

or optimized strategies. With static configurations, all devices in the cell are config-

ured with one of the following SF-TP combinations (i.e., SF7-TP2, SF8-TP5, SF9-TP8,

SF10-TP11, SF11-TP14 and SF12-TP14). The latter are compared to the random con-

figuration denoted as RAND where each device randomly picks SF and TP values, the

adaptive data rate ADR which is the standard configuration adopted now by LoRa that

dynamically assigns to the device one of the SF-TP configurations depending on the

highest receiving power measured from nearby GWs and finally TOPG, an optimized

configuration method proposed in [29] based on GMM and TOPSIS optimization algo-

rithms. The latter starts from ADR configuration and modifies SF or TP configuration

to improve QoS in each slice.

A higher spreading factor for LoRa results a longer time on air (ToA). Thus, TP

increases with increasing SF because LoRa radio module will need more time to send

the same amount of data. Therefore, with static configurations, when all devices are
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(a) Mean Battery lifetime (months) (b) Mean Packet Loss rate (%)

(c) % of devices served in delay (d) % of devices served in throughput

Figure. IV.3: Performance evaluation of 2500 devices simulated with various SF-TP
configuration strategies

configured with one of SF-TP combinations, battery lifetime increases with low SF and

TP values as shown in Fig. IV.3a. However, for higher static configurations, the mean

lifetime of a device is lower when a device is configured randomly or with ADR, which

was the most energy efficient configuration, where each device is configured based on

its distance to the most reliable GW. However, knowing that TOPG is less efficient in

terms of energy than ADR, QoS performance was highly improved in terms of reliability

and the percentage of devices that respected GBR and delay thresholds as respectively

shown in Fig. IV.3b, Fig. IV.3c and Fig. IV.3d respectively. TOPG modifies TP or

SF to ensure the receipt of a packet above the sensitivity level and to avoid the loss of
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packets received simultaneously at a channel and configured with the same or different

SFs. Hence, instead of loosing both packets, at least one of the packets will be decoded

successfully. Moreover, configuring all IoT devices with same configuration is proven to

be inefficient in terms of QoS. For example, configuring all devices with static SF7−TP2

combination increases the rate of packets lost due to interference for nearby devices and

to lack of sensitivity for cell edge devices. Similarly, RAND configuration do not take

into consideration the position of the device and QoS thresholds of the ones transmitting

in each LoRa slice. This leads to extreme misconfigurations and explains the lowest

performance results in terms of QoS. ADR dynamically assigns the proper combination

to the device based on its position which highly improved reliability but do not consider

QoS thresholds defined for each LoRa slice. This highlights the advantages of considering

an optimized configuration where, unlike ADR, TOPG assigns IoT device configuration

in a way that respects QoS thresholds defined for each slice. Therefore, TOPG is adopted

for the following slicing performance study because it highly improves the performance

of each slice members compared to static, RAND and ADR configurations.

IV.5.2 Centralized vs Distributed Slicing

Based on the scalability study performed in [55], LoRa scalability varies for different

IoT applications. In some applications, high spreading factors cannot be used due to

violation of radio duty cycle by the message transaction period. Hence, knowing the

variety of IoT use cases and when end devices density increases as well in the network,

it looks impractical to manage IoT communications in a centralized manner specially

if the SDN controller configures edge devices with high spreading factors which at its

turn increases packet error rate and collisions [116]. Moreover, in large scale networks,

the SDN controller should be able to acknowledge more messages as the number of

IoT devices in the network increase. This increases signaling cost and slicing decision

time and hence affects delay performance. Instead, performing resource reservation in a

distributed manner while being closer to end devices could save lots of time and energy.

For this reason, delay performance is evaluated for URA slice members as it requires

the respect of the lowest PDB. The goal here is to show the efficiency of considering
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distributed slicing for large scale networks. Fig. IV.4 validates this assumption when

the distributed slicing respected more URA PDB threshold when IoT devices density

increases in the network.

Figure. IV.4: Mean URA slice members delay

IV.5.3 Performance Study with various network slicing strategies

In this section, the performance in LoRa slices is evaluated for various slicing strategies.

The first denoted as FIXED is a strategy where the centralized SDN controller re-

serves the channels equally between LoRa slices. Hence, for each GW, the total number

of channels is divided by the number of slices and reserved accordingly. The second

strategy is derived from the literature [41] and denoted as PROB because the number

of channels reserved for each slice is defined based on the probability that the traffic

generated at a time instant is less than the maximum throughput that can be uploaded

through the reserved channels. The third strategy is using centralized network slicing

denoted as CENT where slicing decisions are performed on all GWs using maximum

likelihood throughput estimation while having a global overview of IoT devices posi-

tions and their QoS requirements [28]. With CENT , slicing decisions are taken by the

centralized controller and transmitted to the GW which reserves the channels for each

slice starting by the one with the highest slicing priority. We compare these strategies

to the proposed distributed slicing algorithm, denoted as DIST , where unlike CENT ,

slicing and resources allocation decisions are taken by each GW in a distributed manner.
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Simulation is performed with respect to the parameters summarized in Table II.1 when

the number of devices increases till it reaches 5000 devices deployed in LoRa network.

The goal is to evaluate how slicing performance varies for each strategy in large scale

LoRaWAN in terms of reliability, battery lifetime and respecting QoS thresholds.

(a) Mean Reliability in URA slice (b) Mean Reliability in RA slice

(c) Mean Reliability in BE slice

Figure. IV.5: Reliability performance study in every slice with various slicing strategies

IV.5.3.1 Slice-based Reliability

In Fig. IV.5, reliability performance is evaluated for each slice. The best reliability

performance, illustrated in Fig. IV.5a, is achieved with URA slice members compared

to RA and BE slices regardless of the adopted strategy. This proves the utility of

forming virtual isolated networks over physical LoRa equipments. FIXED strategy
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scored the least reliable results overall because the slicing is static and does not adapt to

slicing admission. The latter depends on the running application on each device where

some transmissions could be urgent or just requiring a best effort behavior. Moreover,

Fig. IV.5a and Fig. IV.5b show that although PROB slightly improved reliability

performance for URA and RA slices, PROB had the worst performance in BE slice

due to the over estimation of the amount of channels that should be reserved for urgent

and reliable slices. CENT and DIST proved their efficiency reducing PLR compared

to FIXED and PROB strategies. However, when congestion increases in LoRa, the

efficiency of DIST method is clearly highlighted in Fig. IV.5c and proved to be the

best slicing strategy between the ones simulated. This specially appeared in the BE

slice where with CENT more than 50% of packets uploaded by BE members are lost

with high congestion scenarios whereas with DIST strategy PLR is limited to 10% of

the total number of packets uploaded. This result returns to the fast adaptation and

the fair resources reservation that the distributed method provides.

IV.5.3.2 Slice-based Battery Lifetime

In Fig. IV.6, when the number of devices increases, the mean battery lifetime of de-

vices, measured in months, decreases as well regardless of the adopted slicing strategy.

FIXED and PROB were the two strategies with the shortest mean battery lifetime for

all LoRa slices simulated in Fig. IV.6a, Fig. IV.6b and Fig. IV.6c respectively. Both

slicing strategies do not efficiently adapt to throughput requirements of each slice mem-

bers. However, knowing that urgent communications are less frequent in IoT, battery

lifetime decreased in RA and BE because part of the channels for URA are sometimes

left unused and kept RA and BE slice members active for a longer time. This wasn’t

the case for CENT and DIST strategies which estimates and adapts to throughput

requirements of each slice members. With CENT , an IoT device, if positioned on the

edge in the range of two GWs, the centralized controller estimates its throughput twice

for both GWs upon resource reservation. Hence, in large scale where the number of edge

devices increases in the network, DIST slicing strategy is more efficient and reduces

the probability of misconfiguring SF and TP parameters, because with DIST , each GW
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reserves its own channels and the throughput requirement of each edge device is only

considered by the GW which is assigned to.

(a) Battery lifetime in URA slice (b) Battery lifetime in RA slice

(c) Battery lifetime in BE slice

Figure. IV.6: Mean Battery lifetime in every slice with various slicing strategies

IV.5.3.3 Percentage of unserved devices in Delay

In Fig. IV.7, FIXED configuration had the worst results with 20% of devices that did

not respect their delay thresholds in URA slice and 40% in RA slice. Here, BE slice is

not considered for all strategies because no delay restrictions are imposed on BE slice

members. PROB was more efficient and improved delay performance in both URA and

RA slices as illustrated in Fig. IV.7a and Fig. IV.7b respectively. The latter show

the efficiency of CENT and DIST slicing strategies. In both URA and URA slices, the

100



CHAPTER IV. DISTRIBUTED NETWORK SLICING IN LARGE
SCALE LORAWAN

rate of unserved devices in delay did not exceed 10% of the packets transmitted with

CENT and DIST slicing strategies. This highlights the importance of considering slice-

based resource reservation and network optimization for both methods. However, with

DIST slicing, decisions are taken faster and closer to the infrastructure which improves

the rate of devices that respected PDB thresholds when reducing signaling information

transmitted to the centralized controller.

(a) Percentage of unserved nodes in delay for URA
slice

(b) Percentage of unserved nodes in delay for RA
slice

Figure. IV.7: Percentage of unserved nodes in delay

IV.5.3.4 Percentage of served devices in Throughput

Further improvement in throughput is achieved in Fig. IV.8 where DIST was also

the best slicing strategy compared to the ones simulated in this work. The rate of

devices that respected GBR in URA and RA slices is respectively illustrated for each

slicing strategy in Fig. IV.8a and Fig. IV.8b. The proposed DIST slicing scored the

best performance in both slices and the was the only strategy that had more than 50%

of devices respecting GBR thresholds even in a very congested scenario. This mainly

highlights the efficiency of DIST method when combining distributed slicing strategy

with slice-based configuration optimization. Its fast adaptation to QoS requirements

of IoT applications installed on end devices provides the most suitable SF and TP
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configurations in large scale IoT network.

(a) Percentage of served nodes in throughput for
URA slice

(b) Percentage of served nodes in throughput for
RA slice

Figure. IV.8: Percentage of served nodes in throughput

IV.6 Conclusion

In this chapter, distributed slicing is proposed to prevent potential challenges that may

appear due to the increasing congestion in large scale IoT deployments and to reduce

network complexity. The proposed SDN-based architecture improves LoRaWAN scala-

bility and performance in large scale scenarios by leveraging computational intelligence

to LoRa gateways and moving closer to the edge. Here, LoRa GWs defines locally

the slicing strategy and the resources that should be reserved for each LoRa slice af-

ter a coordination phase with neighboor gateways to improve network reliability and to

avoid resource starvation that may happen due to congestion in large scale LoRa de-

ployments. Numerical results have shown that the proposed distributed slicing strategy

outperformed the centralized one in more congested scenarios due to its faster adaptation

to IoT devices QoS requirements.
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General Conclusion and Perspectives

To support efficient IoT communications with guaranteed QoS requirements, new contri-

butions are needed to provide flexible resource management in the network and optimize

its configuration dynamically. In this thesis, we proposed new ideas that improve spec-

trum management, QoS consideration and energy efficiency in IoT networks using net-

work slicing and software defined networking. The proposed solutions are implemented

over LoRaWAN due its low power, wide area, open alliance and its potential to support

large scale IoT deployments.

After dividing IoT services into three class of services based on urgency and relia-

bility, network slicing is first implemented in the centralized LoRa architecture where

each class of services belongs to a network slice. The latter are proved to be completely

isolated to protect urgent and critical IoT communications from being impacted by less

prioritized IoT devices. Next, various static and dynamic slicing strategies are compared

with different spreading factor distributions. Results show that the adaptive dynamic

slicing and configuration method was the best in terms of QoS, reliability and energy con-

sumption. With this strategy, the centralized server defines, for each GW, how channels

are reserved for the virtual slices configured on that GW based on an MLE estimation

of devices throughput requirements in its range.

To improve these results, we extended the previous method with a slice-based opti-

mization that improves spreading factor and transmission power parameters configura-
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tion at the physical layer. While respecting QoS thresholds of each slice, IoT devices are

configured with TOPG, based on TOPSIS and GMM optimization methods. The pro-

posed TOPG method finds the configuration that responds best to multiple objectives

in terms of improving QoS, avoiding interference and reducing the energy consumption

of each slice members.

Despite improving network performance with the previous contributions, LoRaWAN

will still come up short in meeting scalability challenges in next generation large scale IoT

networks. Therefore, we finally proposed an SDN-based distributed LoRaWAN architec-

ture and slicing strategy improved reliability performance for 5000 devices deployed in

the network. When slicing and configuration decisions are leveraged to the edge, LoRa

GWs will be able to apply the needed optimization faster instead of just sending all

information to the server.

For future works, the focus should go towards investigating the findings of this thesis

and implementing network slicing in real test-bed implementations. We will work on

practically proving the slicing concept in all LoRa architecture layers. Moreover, some

further improvements could be also realized by integrating artificial intelligence with

machine learning tools to enable rapid analysis, prediction, and decision making. Finally,

we also intend to work on other big challenges in IoT such as improving security measures

and ensuring interoperability in next generation IoT networks.
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