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 acceleration vector  
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 symmetric rate tensor  
 outer diameter of the ring  
 inner diameter of the ring  
 Deborah number  
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 constant squeeze velocity  
 dimensionless Weissenberg number  

   
 inclination angle of a solid surface  
 slip parameter  
 cone inclination angle (cone-plate geometry)  
 phase angle  
 correction value of phase lag  
 hencky strain  
 oscillatory strain amplitude, oscillatory squeeze amplitude  
 angular frequency  
 frequency (squeeze flow)  
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CChhaapptteerr    11.. INTRODUCTION 
 

 

1.1. THE CONTEXT OF THIS STUDY AND ITS MOTIVATION 
 

The technological advance has encouraged, during the last decade, the manufacturing 

and use of new materials, with complex micro-structures and innovating properties. Their 

existence has been and still is conditioned by the need to enhance the efficiency of certain 

technological processes, of the advance in important fields such as medicine, manufacturing 

of medicines and of cosmetics, the food and cosmetic industries, the production of energy, 

recycling of resources, industry of transports, of car manufacturing, etc. 

Within the thesis framework, we may assert that, as regards complex fluids, the three 

mandatoy stages– development, production and use – are conditioned by the possibility to 

understand and model fluid rheological behavior, both at macroscopic level, and at the micro 

or nanoscale levels. Fluid reology is implicitly determined by its properties of viscosity, 

elasticity and plasticity. A high interest has always been shown to the viscoelastic behavior of 

materials, viscoelasticity being the property of a material to manifest simultaneously a 

rheological behavior that is both viscous, and elastic, when it is subject to a deformation, due 

to the application of stress. 

Fluids rheological characterisation supposes the determination of the extra stress tensor, 

present in the equations of motion, starting from rheological measurements. Extra stress 

tensor expression depends on deformation (applyed strain) and on the deformation rate, is 

called a constitutive relation. The rheological characterization, respectivley material functions 

modelling, is made by submitting the samples (fluids) to various mechanical tests that 

implicate shear motions, extension motions or squeeze flow.  

In the last years, the analysis of the materials with nonlinear viscoelastic behavior has 

becomed one of the main problems in the field of rheology. The understanding, use and 

correction of testing procedures; the correlation between the macroscopic response of fluids 

obtained following the applied deformations (viscosity curves, flow curves, components of 

the complex module) with the changes occurred in the microstructure of materials (chemical 

reactions, particles dynamics); classification of materials depending on the nonlinear 

viscoelastic response; all these aspects represent important steps which form the basis of 

nonlinear viscoelasticity theory. Covering all these steps is imperative for science and 
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research advance, for the human society needs to manufacture new complex materials with 

specific properties, to process and use them.  

The present thesis „Procedures for the Rheological Characterization of the Nonlinear 

Behavior of Complex Fluids in Shear and Squeeze Flows”, represents an analysis of rheological 

testing procedures for simple and complex fluids in both linear and nonlinear viscoelasticity domains. 

The study has been achieved following the agreement of joint supervision between the Polytechnic 

University of Bucharest and the Poitiers University of France. Therefore, the entire activity has been 

financed out of the European Social Fund through the Operational Sectorial Programme of 

Development of Human Resources - POSDRU 2007-2013. The research activity has been carried out  

within the REOROM Laboratory, Interaction Field-Substance (BIOINGTEH Platform), the 

Department of Hydraulics and of Hydraulic Machines, the Faculty of Energetics of the Polytechnic 

University of Bucharest, and within the Structure and Interference Laboratory of Axa TriboLub of 

the Mechanic Engineering Department and Complex Systems, the Poitiers University of France.   

 

 
Fig. 1.1. Rheological characterization of fluids using experimental measurements, numerical modeling 

and analitical constitutive models. 
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The importance and innovative character of this work is justified by the correlation of 

the experimental testing procedures with the numerical modelling of the flow processes, 

technically supporting a new concept in the field of rheology, namely the Computational 

Rheometry (see Figure 1.1).  

The limitations of experimental instrumentation for rheometric measurements available 

nowadays (fulfillment of “no slip” or adherence condition during tests, visualisation of flow 

dynamics within the testing gap) encourages the findings of new investigations solutions, the 

understanding of dynamics and kinematics of flow motions used in rheometric tests. 

Thus, in this work, rheometrical experimental procedures are correlated with numerical 

simulations of the real flows, allowing the analysis of velocity fields and fluid kinematics in 

the testing gaps, adherence condition influence on flow kinematics and implicitly over the 

rheological properties measured during the experimental investigations.  

Equally, the complexity of the study is justified by the correlation of the simple shear 

tests with the complex squeeze motion, both in simple or dynamic controll of the applied 

deformation. 

 

1.2. THESIS STRUCTURE 
 

The approach of an extended range of rheological testing procedures, and a variety of 

fluids behaviors, requires the presentation of theoretical continum mechanics, rheology and 

rheometry, presentend in Chapter 2 and Chapter 3.  

Thus Chapter 2. Rheology and Rheometry presents some fundamental notions of Fluid 

Mechanics and Rheology, concepts regarding rheological properties of simple and complex 

materials (viscosity, elasticity, surface tension, adherence), the linear and non-linear 

viscoelastic behavior and, not least, the shear, extension and squeeze motions commonly used 

in rheometric tests. 

Since a large part of the thesis is dedicated to the complex motion of fluid squeeze, 

Chapter 3. The Squeeze Flow represents a wide study on current stage of research concerning 

squeeze flow and the theoretical expressions of the flow in various geometries, tests, with or 

without the influence of no slip, inertia or thermal conditions. Also in Paragraph 3.2.5 are 

presented several analytical solutions used for the squeeze flow of generalised Newtonian 

fluids, and the studies achieved so far for viscoelastic fluids in squeeze flow. 

Chapter 4. Numerical Investigations of the Squeeze Phenomenon represents a broad 

study of the squeeze phenomenon by using numerical simulations, for both constant velocity 

and oscillatory motions. In this chapter are presented simulations of the real yield both in the 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 

Chapter 1. Introduction  
 

  20  
  

presence of the fluid-solid-air interface, and in its absence. In Chapter 5. Experimental 

Investigations of the Squeeze Flow are presented the results obtained following the 

experimental investigations of simple and complex fluids, both in the constant velocity 

squeeze flow, and in the oscillatory squeeze flow.  

Chapter 6. Non-linear Behavior of Complex Fluids in Shear Motions includes a 

wide study of complex fluids in the field of non-linear viscoelasticity, making the correlation 

between the testing procedures that use simple shear motions and dynamic shear tests, 

associating the viscoelastic non-linear behavior with the yield stress of complex fluids 

included in the category of soft solids. 

 In Chapter 7. Influence of the Microstructure of Contact Surfaces over the Squeeze 

Force is studied the influence of the microstructure of contact plates over the aherence/slip 

properties of Newtonian fluids and implicitly on the rheological measurements performed in 

the presence of patterned surfaces.  

Chapter 8. Final Conclusions ends this paper by summarising the most important 

conclusions, quantifying the original contributions of the entire PhD thesis and evidencing the 

further directions of study. 
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CChhaapptteerr    22..  RHEOLOGY AND RHEOMETRY 
 

 

The objective of this chapter is to review the fundamental notions in the field of 

rheology, the rheological properties of simple and complex fluids, the classification of fluids 

depending on the rheological behavior, as well as the main methods to determine material 

functions. 

The term „Rheology” appeared for the first time in 1929, being proposed by Eugene 

Cook Bingham, professor and manager of the Chemistry Department of the Lafayette College 

of Pensnsylania USA. Inspired by the motto of the renowned Heraclitus, „Panta rhei”, 

translated as „everything flows”, the term was officially recognized together with the 

incorporation of the first Society of Rheology, in December 1929. When defining rheology as 

an independent field of study, we must also specify the contribution of Markus Reiner, who 

introduced Deborah’s number, , as the main parameter of characterization of the 

rheological behavior, where  is the relaxation time step of the material (an elastic feature) 

and  is the flow observation time step. A purely viscous fluid is characterized by De  0, 

while a purely elastic material is defined by De  ∞. In the field  , materials have a 

viscoelastic behavior, whose study defines the purpose of rheology.  

Rheology studies the flow of the matter, mainly focusing on the analysis of fluids, 

without however excluding the “soft” solid materials which, during certain exterior stresses, 

show flows instead of elastic deformities. In this context, Flow is defined as the deformation 

whose value increases permanently under the actions of efforts (stresses), is not fully 

recovered after removing the exterior stress. The main objective of rheology science is to 

define mathematical models (called constitutive relations) capable of representing the answer 

of materials to mechanical stresses. Rheological characterization and material properties 

(quantitative and qualitative relations between deformation and stress), is performed using 

experimental testing procedures, studied and improved within „Rheometry” domain.  

Rheology determines fluids behavior depending on the ratio between applyed stesses and 

changes that occur within materials internal structure, these aspects are not described by 

classical methods in fluids mechanics or elasticity. Beginning with the XVII century, studies 

regarding the representation of the ideal elastic solid have appeared, being materialized in 

representative works like those of Boyle (1660), Hook (1678) and later Young (1807) and 
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Cauchy (1827). In the same period were published the first representative works, analyzing 

ideal fluids, without viscosity, belonging to Pascal (1663), Bernoulli (1738), Euler (1755). 

Departing from the definition of the fluid viscosity concept by Isaac Newton (1687), based on 

the principles pronounced by him, the evolution of the research leading to the definition of the 

fundamental equation of flow of linear viscous fluids (Newtonian) by Navier (1823) and 

Stokes (1845).  

The first model of viscoelastic fluid belongs to Maxwell (1867), being described by a 

first order differential equation which expresses the dependence on the deformation shear 

stress (by viscosity), in the presence of the material stress relaxation, due to elasticity. In 

1878, Boltzmann proposes the principle of superposition by which it is deemed that the value 

of a function characteristic to a system (for instance stress) is given by the sum of the history 

of said process (in this case, of deformations). The Maxwell model is extended in 1888 by 

Thomson (Lord Kelvin) by a new concept of the distribution of relaxation time steps of the 

material, and in 1902 he introduces, together with Poynting, the well-known mechanic model, 

formed of an elastic element (spring) and a viscous element (buffer). Later, the bases of the 

theory of generalised Newtonian fluids have been set, in remarkable works such as those 

published by Bingham (1922), Ostwald (1925), Herchel & Bulkley (1926), continuing with 

studies about the visco-elastic behavior of certain complex fluids, suspensions (Einstein, 

Jefferys), polymers (Sconbein, Baekeland, Carothers), and introducing the concept of 

extensional viscosity (Barus, Trouton, Tamman & Jenkel).  

Further on, basic mathematical models in rheology  were developed by Oldroyd (1950) 

– the model of continuous media, Lodge (1956) – the theory of microscopic networks for 

viscoelastic materials belonging to him, and the Doi-Edward model (1978), explaining the 

networks and formations appeared in the structure of polymers. For a more detailed 

description of the evolution of theoretical models and of experimental results in the field of 

rheology, the following works are recommended [26], [70], [141], [166], [217].  

 

2.1. CAUCHY’S EQUATION OF MOTION AND THE STRESS TENSOR 
 

As part of the mechanic of continuous media, the mechanic of fluids is based on four 

principles of preservation, incorporating the fundamental physical parameters defining a 

dynamic process: mass of bodies, impulse, energy and entropy. The application of these 

principles and the solution of the corresponding balance equations allows the description of  

continuous media flow kinematics, depending on material’s constitutive relation. 
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Mass conservation principle  

The mass of any fluid body with the density  that occupies a spatial field D(t) is 

constant in time during the execution of the motion, the local form of this principle being 

given by the relation [60], [119]: 

 
( 2.1) 

where       

 

      ( 2.2) 
defines the material derivative. 

 

Equation of motion (impulse conservation) 

The sum of the mass and surface forces acting over the body is equal to the variation in 

time of the impulse defined by the relation: 

 

( 2.3) 

 

( 2.4) 
The local form of the relation (2.4) is:  

 
           ( 2.5) 

where  is the acceleration,  the mass force, and  is the Cauchy symmetrical stress tensor,  

 
                 (2.6) 

where  is the extra-stress tensor defining the contribution of the body deformation to the 

state of stress, and  is the pressure (spherical compression stress) [60], [119], [155]. The 

correlation between the extra-stress tensor and the body deformation is achieved by an 

equation called constitutive relation (or material equation). For a Cartesian coordinates 

system, Cauchy’s equations of motion have extended form: 

 

( 2.7) 
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The Navier-Stokes equation represents a particular form of the impulse preservation 

principle, in the hypothesis that the analyzed fluid is a purely viscous fluid in laminar motion. 

In the equation of motion,  

 

                                  (2.8) 
for an incompressible Newtonian fluid, the following constitutive relation is used:  

 
( 2.9) 

where  is the symmetrical tensor of the specific deformation rate, and  is the viscosity, 

exclusively dependent on temperature and pressure, for a purely viscous fluid,  

 
( 2.10) 

In this paper, unless additional specifications are made, motions are considered 

isothermal and isochoric, therefore . The Navier-Stokes equation becomes in this 

case: 

 
( 2.11) 

As regards the incompressible generalised Newtonian fluids, the extra-stress tensor has 

the form: 

 
            ( 2.12) 

with  (isochoric motion condition).   

Viscosity is, in this case, a function which depends on the second invariant of the 

deformation tensor,  ,  

 
            ( 2.13) 

For details regarding this paragraph, the following works are recommended [12], [59], 

[60], [119], [155].  

 

2.2. RHEOLOGICAL PROPERTIES OF SIMPLE AND COMPLEX FLUIDS 
 

The rheology of a fluid is implicitly determined by its properties of viscosity and 

elasticity. Viscoelasticity is a material the property manifest simultaneously a rheological 

behavior, both viscous and elastic, when subject to a deformation (due to an applyed stress). 
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The rheological characterisation of a fluid supposes the determination of the extra stress 

tensor, present in the equations of motion, starting from rheological measurements. The 

expression of the extra stress tensor, which depends on strain and strain rate, is called a 

constitutive relation. In the case of a Newtonian fluid, the dependence between stress and 

deformation rate is a linear one, and the viscosity coefficient has a constant value. In a simple 

motion, the incompressible Newtonian fluid (2.9) is defined by the relation:   

 
( 2.14) 

where  is the dynamic viscosity of the fluid,  is the shear stress and  is the shear rate. 

This category of fluids includes water, mineral oils, car lubricants, glycerine, honey etc. 

In the case of the incompressible generalized Newtonian fluids (2.12), this dependence 

no longer has a linear character, viscosity being a function which depends on the specific 

deformation rate, , but which is independent of time (therefore it does not have the 

elasticity property).  

The generalized Newtonian fluids are divided into two categories: pseudoplastic fluids 

(shear thinning), for which the viscosity coefficient decreases with the shear rate ), 

and dilatant fluids (shear thickening), where the viscosity increases with the shear rate, 

( ), where  and  represent „zero” viscosity, 

namely „infinite” viscosity (constant values). The rheological behavior of these materials is 

described by the flow curve  and the variation of viscosity depending on the shear rate 

, (see Figure 2.1).   

The most common „classic” models used to describe viscosity functions for generalized 

Newtonian fluids are:  

a. The Power Model - Power Law, is the simplest model, proposed by Ostwald –de Wale: 

 
  ( 2.15)    

b. The Carreau Yassuda Model 

 
( 2.16)  

c. The Cross Model, similar to Carreau-Yasuda model, describing a pseudoplastic fluid: 

 

       ( 2.17) 
d. The Bingham model, where the critical yield stress appears: 

 

  ( 2.18) 
for .  
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Fig. 2.1. Variation of shear stress (a) and of viscosity function (b) depending on the rheological 

behavior of fluids. 
 

In (2.15 - 2.18), the material constants are:   – consistency index,  – flow index,  – 

characteristic time step,  – Yassuda exponent (  in the Carreau model),  represents 

the Bingham tangential stress, or the yield point,  is the Bingham viscosity. 

e. The Herschel-Bulkley Model (which generalizes the Bingham Model), 

 

  ( 2.19) 
where  is a material function (for a null value of the deformation tensor, the model 

describes a solid behavior). 

f. The Papanastasoiu Model eliminates the discontinuity present in the Herchel-Bulkley model 

at the critical value of the stress point: 

 

  ( 2.20) 
g. The Oldroyd Model 

 

( 2.21) 
where , where  are constitutive constants and  is the relaxation time. 

A representation of these models both for the viscosity function, and for the variation of 

the shear stress depending on the deformation rate is described in Figure 2.2. Each of these 

model parameters influences the variation of the flow curve and viscosity distribution.  

Thus, these models can be adapted to the various rheological behaviors of generalized 

Newtonian incompressible fluids. Model’s dependency on their constitutive parameters is 

shown in Annex 1.  In order to describe the behavior of the viscoelastic fluids, mechanical 

analogical models are used. These models are formed of elastic elements (elastic springs) and 
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viscous elements (viscous dashpots), connected in series or in parallel, each model summing 

up at least one viscous and one elastic element. 

 
Fig. 2.2. Variation of viscosity function (a) and shear stress (b) for different rhelogical models. 

 

  
The simplest analogical models are the Maxwell model (an elastic and a viscous element 

connected in series) and the Kelvin-Voigt model (an elastic and a viscous element connected 

in parallel) shown in Figure 2.3. The Maxwell Model is used to describe the behavior of 

viscoelastic fluids and the relaxation phenomena, and the Kelvin-Voigt model describes the 

behavior of the solid-viscoelastic materials [59], [89], [94], [140], [141], [142], [222]. For the 

Maxwell model, the tangential efforts are equal, and the deformation sums up the elastic and 

viscous components, as follows: 

 
       ( 2.22) 

with  (the Hooke solid),  being the elastic shear module and   (the 

Newtonian fluid). In this case, the Maxwell model is defined as follows: 

 
( 2.23) 

where  is the characteristic relaxation time of the fluid. 

 
Fig. 2.3. Maxwell (a) and Kelvin-Voigt (b) analogical models. 
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If the elastic element becomes rigid, a purely viscous behavior of the fluid will be 

obtained. In the case of the Kelvin–Voigt model, the corresponding deformations are equal, 

and the characteristic tangential stress is obtained by summing up the stresses of the 

components, 

 
( 2.24) 

the constitutive relation of the model being: 

 
( 2.25) 

By connecting these analogical models in parallel or in series, one can determine 

complex models as: Burger model, obtained by the serial connection of a Maxwell model with 

a Kelvin-Voigt model, the Maxwell model connected to a viscous element describes the 

Jefferys fluid, the Letherich model, the Zener model, etc. Any other mechanic model is a 

combination of Maxwell and Kelvin-Voigt models [26], [69], [89], [141], [142], [155], [222]. 

In the linear viscoelasticity domain, real fluids characterization is  made by connecting in 

parallel „m” Maxwell elements (see Figure 2.4), thus determining for each element a certain 

relaxation time step and a corresponding viscosity value. 

 
Fig. 2.4. The Maxwell model with “m” elements conected in parallel. 

 
Understanding the viscoelastic rheological behavior and the relaxation/recovery 

phenomena, is essential for a proper characterization of the materials. The analogical models 

presended above may describe corectley the viscoelasticity mechanism only in the linear 

viscoelatic domain. However, viscoelastic fluids behavior is not always linear, cause the 

present state of stress depends on deformation history by differential equations or non-linear 

integrals. For instance, in the tri-dimensional representation, the Maxwell fluid (eq. 2.23) has 

the form 

σ1 
 
 
 
 
 

σ2 
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( 2.26) 

where  is the objective derivative that introduces non-linearity. The non-linear relations (in 

this case, the Oldroyd model with two material constants,  and ) have the capacity to 

model not only the relaxation phenomenon, but also the effects of the normal stresses 

(exclusively due to the presence of elasticity), [38], [141], [149], [155]. Some of these 

characteristic effects exclusive to the viscoelastic fluids are the Weissenberg effect (the lifting 

on a rod of the viscoelastic liquids, the purely viscous liquids forming a funnel along the rod), 

the swelling of the jet when coming out into the atmosphere from a tube (the Barus effect), 

the unstable flow of polymer meltings through the capillaries or outlets of various 

configurstions (fractures, elastic turbulences and distortions when the shear stress increases), 

[149], [155], [199]. 

 

2.3. RHEOMETRY – TESTING PROCEDURES FOR SIMPLE AND COMPLEX FLUIDS 
 

The determination of the rheological behavior of fluids, respectively of the material 

functions and constants, is made by submitting them to various mechanic tests that implicate 

shear, extension or squeeze flows. In this chapter different flow types used in rheometric tests 

are presented: (i) simple viscometric and extensional motions; (ii) complex squeeze flow, the 

latter being detailed in the following chapter. Fluids rheological characterization (regardless 

the testing procedure motion – shear, extension, squeeze) is conditionated by the 

determination (measurement) of the stresses (that act on the volume elements in motion), 

deformations and the characteristic velocity distributions.  

 

2.3.1. Viscometric motions 

 
The shear tests (also called viscometric) suppose only one flow direction, the velocity 

varying only on the normal direction. Due to the simple kinematics, the viscometric motions 

are commonly used for fluids rheological characterization.  

Depending on the type of motion, they may be simple shear tests or oscillatory tests, the 

expressions of the material functions being defined accordingly. Depending on the 

construction of the experimental devices, namely of the rotational or capillary rheometers, the 

rheometric tests are classified in tests with the control of the shear stress (stress control) and 

tests with imposed strain (strain control). 
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2.3.1.1. Simple shear tests 
 

In the case of the simple shear motion, there is only one tangential shear stress 

, the extra stress tensor having the following form: 

 

( 2.27) 
the rate of deformation tensor being defined by: 

 

( 2.28) 

 
Fig. 2.5. The schematic representation of the viscometric motion of the incompressible 

Newtonian fluids in various geometries used in usual rheometric tests: Hagen-Poiseuille flow in a 
capillary tube a) and the Couette rotation flow in a geometry with coaxial cylinders (b), a cone-plate 

geometry (c) and a plate-plate geometry (d).  
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Table 2.1. Definition of material functions depending on the type of viscometric motion and on the 
flow domain geometry [12]. 

Type of flow Geometry Geometrical  
parameters 

Measurable 
 quantities   [Pa]  [s-1]  [Pa] 

Couette Coaxial cylinders  
    - 

Couette Plate-plate  
    - 

Couette Cone-Plate  
     

Poiseuille Capillary tube  
    - 

 
During a viscometric motion, the fluid is characterized by three material functions: (i) 

the viscosity function  ; (ii) the first difference of the normal stresses 

; (iii) the second difference of the normal stresses ; all these functions 

being exclusively dependent on . 

The gaps used in the Couette geometries are small ( ), thus providing almost 

constant values of the shear stress and of the strain velocity specific in the used volume. The 

testing procedure supposes that the constant rotation velocity  (strain controlled), or of 

a constant shear stress  (stress controlled) are imposed, measuring the torque of 

shearing, respectively the rotation velocity . The measurable specific quantities and the 

expressions corresponding to the type of viscometric motion and of the used geometry are 

shown in Table 2.1.  

 
Fig. 2.6. The applied shear stress (a) and the variation of the strain rate (b) for a Polysiloxane sample, 

results obtained following a Creep test, at. . 
 

The main rheometric tests performed with the presented geometries are the Creep tests 

and the Relaxation test. In the case of a Creep test, the flow is controlled by imposing a 

a) b) 
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constant shear stress (Figure 2.6.a), watching the evolution of the shear rate, respectively of 

the specific angular strain  in time (Figure 2.6.b).  Following such a test, one may determine 

the characteristic time step necessary for each fluid to reach the steady state in order to 

determine the material functions. Materials relaxation time steps depend on their own 

structure, properties and the intensity of the applied deformation. 

 
Fig. 2.7. The imposed shear rate (a) and relaxation of stress (b) for a Polysiloxane sample, results 

obtained following a Relaxation test, at . 
 

For a Relaxation test, a constant shear rate is imposed for one of the surfaces defining 

the gap (see Figure 2.7.a), following the relaxation of the shear stress in time (see Figure 

2.7.b). During the deformation caused by the rotation of the plate, the material stores stress 

tension in its internal structure, which is dissipated once the rotation is stopped. Measuring the 

evolution of shear stresses after plate rotation is stopped, one may notice material’s relaxation, 

this type of test being an indicator for elasticity presence:  (i) for purely viscous fluids, once 

plate stops rotating, the shear stress drops abruptly towards zero; (ii) for viscoelastic fluids, 

the stress is decreasing gradualy, as recorded for the material presented in Figure 2.7.b. 

 
2.3.1.2. Oscillatory shear tests 
 
Two main procedures are available for the determination of fluid viscoelastic properties 

using shear motion: (i) analysis of the material response by simple shear tests (previously 

presented); (ii) dynamic mechanical measurements. For dynamic tests, a time-dependent input 

is considered (periodic motion), generally with sinusoidal shape. The input signal is 

characteriyed by an oscillatory angular frequency  and oscillatory amplitude (  for the 

strain controlled test). Thus, the variation of the strain in time may be expressed by the 

formula:  

 
( 2.29) 

a) b) 
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For viscoelastic materials with linear behavior, the response to such a stress (shear 

stress, ), will have a sinusoidal distribution (at equilibrum), dephased 

compared to the entry signal with the angle . Phase angle (difference between stress and 

strain) contains information on rheological characteristics of fluids (see Figure 2.8). 

 
Fig. 2.8. Phase angle variation for different types of materials (a) and complex modululus definition 

depending on its elastic and viscous components (b). 
 
The shear stress may be expressed depending on the elastic module  and on the 

viscous module  

 
( 2.30) 

or 

 
( 2.31) 

where the components have the expressions: 

 

( 2.32) 
Elastic modulus defines the energy stored in material’s structure and the viscous 

modulus expresses the energy dissipated during the flow, both being determined as function 

of tangential stress component and the applied deformation see Figure 2.8. The complex 

modulus is a sum of  elastic and viscous components, having the following form: 

 
( 2.33) 

The complex viscosity of the fluid may be decomposed the same as the complex 

modulus in the dynamic viscosity ( ) and the dynamic rigidity ( ). 

 

 

 

δ 

a) b) 
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( 2.34) 

In the integral form, the complex module is the following:  

 

( 2.35) 
For viscoelastic analogical models (previously presented), the complex modulus, 

respectively its components, take particular forms. For instance, in the case of the Maxwell 

model, the viscous and the elastic moduli have the following expressions: 

 

 ( 2.36) 
 

where the term  expresses the purely viscous component of the material. 

 
Fig. 2.9. Approximation of the experimental modules  and  for a viscoelastic solution with the 
Maxwell model with 8 elements, with variable relaxation time steps, at different amplitudes of the 

applied strain:   (a);  (b) şi   (c). 
 

The representation of viscoelastic fluid rheological behavior, a Maxwell model with 

„m” elements connected in parallel is used, as shown in Figure 2.3. Complex moduli 

b) a) 

c) 
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expressions are obtained, in this case, by summing the relations (2.36), for details see [89], 

[141], [142], [155], [222]: 

 

 (2.37) 

The relaxation spectrum is one of the most important characteristics of linear 

viscoelastic fluids, and it may be determined using relations (2.36 - 2.37). Figure 2.8 presents 

the approximation of the experimental moduli of a viscoelastic fluid (shampoo) by a Maxwell 

model with 8 elements connected in parallel. The relaxation times vary depending on the 

intensity of the applied strain, respectively of the stresses stored in fluid internal structure 

during the flow, the values obtained for relaxation times and corresponding viscosity 

coefficienta are indicated in Annex 2. 

Rheological characterization of low viscous fluids using conventional rotational 

rheometers is very difficult due to the influence of measuring systems inertia and moment 

transducers limitations. Hence, for low viscous fluids, the use of capillary rheometers (mainly 

used for high shear rates flows) is recommended [38], [222].  

 

2.3.2. Extensional motions 

 
Extensional motions find their applicability in many important industrial processes: 

manufacturing process of optical fibers, fluids flow through porous layers, grooves and slits 

(divergent and convergent flows), moulding plastic materials in complex forms. The main 

types of extensional motions are uniaxial, biaxial and plane. 

 
Fig. 2.10.  Usual geometries used in extensional tests: forming of fluid filaments on horizontal (a) and 

vertical directions (b, c); aspiration of fluids in tubes with small diameters (d). 
 

a) b) c) d) 
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As regards pure uniaxial motions, both extra stress tensor (relation 2.38) and strain rate 

tensor (relation 2.39) depend on the strain rate , where  is the specific extensional strain 

(Hencky strain), [69], [89], [141], [142], [155]: 

 

( 2.38) 

 

( 2.39) 
The velocity vector, in a Cartesian coordinates system, has the form:  

 

( 2.40) 
A fluid in uniaxial elongational flow is characterized by the extensional viscosity 

, proportional with the dynamic viscosity, , where  is 

the dimensionless Trouton number dependent on the material (Tr = 3, for a purely viscous 

fluid) in a simple extension [89].  

The main uniaxial extensional tests are based on the forming of fluid filaments on 

horizontal (Figure 2.10.a) or vertical (Figure 2.10.b and c) directions, flows by convergent 

geometries or with diameter leaps or fluid aspiration in tubes with small diameters (Figure 

2.10.d), aiming at measuring the diameter of the fluid filament, of the flow rate, of the 

extensional stresses and in the end the calculation of elongational (extensional) viscosity. We 

must specify that the non-monotonous dependence of the  number is a manifestation 

exclusively of the fluid elasticity.  

In numerous cases (polymers), the   number may reach very high values ( ), 

which indicates fluids capacity to support very high extensional stresses compared to the 

Newtonian fluids of the same viscosity. 

 

2.3.3. Complex motions – squeeze of fluid films 
 

The squeezing flow (squeeze flow, compression flow) may be defined as being the 

“complex flow in which a fluid is compressed and deformed between two solid surfaces that 

approach one to each other, determining the expulsion of the fluid outside the gap” (see 

Figure 2.11).  

The term of “complex motion” defines a very important feature of the phenomenon: 

unlike the previously described simple motions (shear or extensional motions), in the axial 
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symmetric squeeze flow two flow directions appear - on radial and axial directions- the strain 

rate tensor having one component. Commonly, squeeze flow is associated to the term of thin 

films, due to the very small spaces between the surfaces in relative motion.  

Practical applications of the motion are met in various fields as: engineering 

(lubrication, thin films and fluid dampers, metal or plastic processing), [145], [207], [208], 

bioengineering (dynamics of biofluids), rheology (characterization of simple and complex 

fluids), food and cosmetic industries (manufacturing processes), etc. Squeeze flow is used to 

determine rheological properties for a varied range of fluids: purely viscous, visco-elastic 

[183], [184], [185], [186], [187], visco-plastic fluids (with yield point or “yield stress fluids”) 

[206], [207], [208], [209], simple fluids and complex fluids [78], [112], [165], [207], [239], 

more details being provided in Chapter 3. 

 
Fig. 2.11. Fluid squeezed between two parallel surfaces. 

 
Commonly, the testing procedure implicates a fixed lower surface and a displacement of 

upper wall (plate), followed by the deformation and squeezing of the film from the gap. In 

most cases, the two surfaces are circular, the induced motion being axial-symmetrical.  

Depending on the testing procedure used, the rheometric squeeze tests are divided into 

two categories: (i) squeeze tests in which the plate motion follows a monotonous profile  

in time (achieved by imposing a constant plate rate or by applying a constant load in time); 

(ii) oscillatory squeeze tests, in which the motion is periodical, in most cases a sinusoidal 

displacement profile being imposed. In the general case, the continuity equation and the 

Cauchy motion equations for the axially symmetric squeeze flow of incompressible fluids 

between solid surfaces (in the absence of mass and inertia forces) have the expressions: 

 

( 2.41) 
The extra stress tensor has the following form: 

r 
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( 2.42) 
The cinematic of motion is characterized by the rate gradient: 

 

( 2.43) 
the rate of deformation tensor being: 

 

( 2.44) 
In 2.41 - 2.44,   and  represent velocity components on radial, respectively axial 

directions for squeeze motion (see Figure 2.11). In the case of the symmetrical axial squeeze 

flow with constant rate, the solution of the relation 2.41 (respectively the solution of the 

equation Navier-Stokes) for the two velocity components is (see Annex 3): 

 
( 2.45) 

 
    ( 2.46) 

For a constant velocity squeeze test  (velocity is imposed for the upper 

plate), normal force expression takes two distinct forms, depending on the actual contact 

surface between the fluid and solid surfaces: (i) constant contact area, defined by the 

geometrical dimensions of the test surfaces (eq. 2.47); (ii) constant fluid volume (eq. 2.48), 

the area of the actual contact surface being variable in this case (see Figure 2.12).  

For a constant area squeeze flow, the normal force takes the form, 

 
    ( 2.47) 

and in the case of a constant volume ( ) of fluid, the force expression becomes: 

 
    ( 2.48) 
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Fig. 2.12. Squeeze of a fluid between two parallel surfaces in case of a constant area squeeze flow (a) 

and of a constant volume of fluid (b). 
 

In the case of a constant velocity squeezing test, with known plate velocity ( ) 

and geometrical quantities ( ,  respectively ), the normal force  measured during 

test allows the use of the previously presented expressions to determine the dynamic viscosity 

 of the incompressible Newtonian fluids. For an imposed constant squeeze force , fluid 

film thickness variation in time is given by [12]:  

 

    ( 2.49) 
expression used also to determine Newtonian viscosity, where h0 is the initial thickness (see 

Figure 2.12.a). 

In the case of oscillatory squeezing flow, a time-depenent (periodical) displacement 

profile is considered for the upper plate (commonly with sinusoidal shape), , 

with . Thus, film thickness variation in time is described by: 

 
( 2.50) 

In this case, upper plate velocity is: 

 
( 2.51) 

where is the imposed oscillatory frequency. For the mentioned hypothesis, the squeeze 

force becomes:  

 

( 2.52) 
For a given geometry ( , ), the relation (2.52) may be used to determine the 

Newtonian viscosity , by measuring the force . Squeezing tests are also used to 

a) 

b) 
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determine characterize Newtonian generalised and viscoelastic fluids, the force expression 

changes depending on the viscosity function associated to each type of rheological behavior. 

All these aspects will be presented in detail in Chapter 3. 

 

2.4. NON-LINEAR VISCOELASTICITY 
 

In the previous chapters were introduced the rheometric techniques used to detrmine the 

rheological properties of viscoelastic fluids in linear regime, characterized by a proportional 

variation of the material response with the applied strain amplitude or shear rate. 

Nevertheless, for almost all complex materials (for instance: polymers [64], [88], [111], [115], 

emulsions [29], concentrated suspensions of solid, soft or glass particles [31], [44], [135], 

[128], [204], [231], greases [14], [17], [125], [126], metastable coloidal systems – gels, 

entangled materials, wormlike micellar solutions, branched or unbranched polymers – soft 

entangled materials [107], [196], [250], biomaterials [81], [82], [83], [146], soft solids, etc.), 

the complexity of the inner structure leads to  structural changes at the microscopic level 

under external loads which induce a non-linear rheological behavior.  

This behavior is noticed at the macroscopic level during the application of high 

deformations trough: (i) occurrence of a plateau of the flow curve in simple shear flows; (ii) 

preferential directions of the flow, non-homogenity of viscosity function; (iii) nonlinear 

dependence of material functions on the applied stress; (iv) unusual “peaks” in the 

distributions of the components of the complex module in dynamic tests). The non-linear 

character depends on time, on the size of the input signal, and it leads to loss of 

proportionality between input and output quantities [149], [158]. 

This behavior is encountered in viscoelastic materials with yield stress, being 

highlighted especially for the phase transition zone, from one state of the material to another 

(solid-liquid, respectively liquid-solid), reached in the vicinity of the yield shear stress  

[14], [20], [114], [250].  This category of viscoelastic fluids will be particularly studied in this 

paper. The scientific literature provides multiple definitions of the yield stress, all of them 

being associated to the time scales related to the dynamic process: the relaxation times of the 

material, the experimental (testing) time, the chemical reaction times in which the 

components of the material react, the characteristic time in the sol-gel transition [236], [242]. 

The trasition from one rheological regime to another is performed in a domain where 

the instability of the material is obvious. According to literature, the change of the rheological 

behavior may be due to different factors, however depending on the material internal 

structure: as regards polymers, this may be due to the destruction of the internal network 
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(elastic) structure of the material or to the creation of new chemical bonds (the phenomena of 

reptation, branching, cross-linking) [107], [116], [115], [114], [196], [146]; as regards the 

suspensions of soft or solid particles and the emulsions, this may be due to the formation of 

particle agglomerations (clusters) or liquid bubbles Sometimes, the instability of the material 

is associated, at the macroscopic level, with phenomena such as wall slipping, depletion [44], 

[115], [114], [126], [196], [231], or with the forming of bands in the material (shear banding 

phenomenon) [57], [84], [85], [92], [111]. 

For yield stress fluids, the evolution of the yield curve and of the components of the 

complex moduli depending on the strain rate, respectively on the value of the strain 

amplitude, allows the characterization of the rheological regimes as follows: the linear regime 

at small amplitudes and reduced shear rates, where the regime generally corresponds to the 

solid-elastic state or viscoelastic behavior with pronounced elasticity, field generically called 

SAOS (Small Amplitude Oscillatory Shear) [31], [52], [196]; the transitory regime at medium 

amplitudes, MAOS (Medium Amplitude Oscillatory Shear) and medium strain rates where the 

two rheological states, solid-liquid, coexist [115], [116]; the third domain corresponds to the 

large strain amplitude area LAOS (Large Amplitude Oscillatory Shear) or to the high strain 

rates where the material behavior is preponderantly viscous [14], [31], [52], [81], [83], [233]. 

 
Fig. 2.13.  Illustration of the non-linear behavior of complex fluids with yield stress σ0 by the material 

flow curve (non-monotonous variation ). 
 

At present, there are multiple techniques for rheological characterization, the most 

common being the oscillatory tests with large amplitudes, the analysis of non-linear response 

is made by various methods: Fourier analysis [10], [31], [44], [129], [175] Cebishev 

polynomials [196], [197], Lissajous and Pipkin diagrams [83], [143], analysis of complex 

module evolution [44], [114]. At the macroscopic level, the non-monotonic behavior is 
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recorded also during simple shear tests by a “jump” (plateau) in flow curve distribution (see 

Figure. 2.13) for which, at the same value of the critical shear stress, three values of the shear 

rate correspond [14], [243]. The “jump” occurs for a certain domain of the applied stress, 

being solely dependent on the deformation history (the time in which the material reaches the 

yield point). Therefore the jump depends on the initial testing conditions (initial state of stress 

within the material) and it takes place when reaching , which defines the yield stress [11], 

[13], [16], [17], [45], [189], [243]. 

 
Fig. 2.14.  Deformation of stress output signal for complex in large amplitude oscillatory shear flow 

[114]. The input deformation signal is a pure sinusoide with increasing strain amplitude. 
 

It must be specified that the S1 and S3 solutions may be experimentally obtained during 

the simple shear tests, but the S2 solution cannot be obtained experimentally, as it has a purely 

theoretical character (and it is unstable). At high shear rates, beyond the yield stress, the 

behavior of the fluid shows a dependence  of the power-law type, with a small flow 

index ( ), below the yield stress the viscosity being almost constant [20], [114], [192], 

[158], [250]. Another indicator of non-linear regime is the deformation of output stress signal 

[114], [117], [126], [143], [146], (see Figure. 2.14) and the strain amplitude dependence of 

dynamic moduli in oscillatory tests [29], [114], [128], (see Figure. 2.15). 

Depending on the evolution of the elastic and viscous components, we may determine 

the non-linear rheological character specific to the analysed fluid, being set, so far, four large 

categories of specific behavior: (1) pseudo-plastic, depending on the strain amplitude (strain 

thinning), (Figure 2.15.a); (2) dilatant, depending on the strain amplitude (strain hardening), 

(Figure 2.15.b); (3) with a small jump in the stress distribution (weak strain over shoot), 

(Figure 2.15.c); (4) with significant jump in the stress distribution (strong strain overshoot), 

(Figure 2.15.d), [114], [128], [169]. Of interest for this study are the categories 3 and 4, in 

which the occurrence of the non-linear viscoelasticity is emphasized. The third category of 
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materials (Figure 2.15.c) is characterized by a maximum occurred in the distribution of the 

viscous model, in the MAOS field, this behavior being associated to the suspensions, pastes, 

concentrated emulsions, polymer solutions and soft glassy materials [29], [114], [128], [117].  

The strong strain overshoot behavior (the fourth category) is characterized by an almost 

equal contribution of the dynamic modules in the area of small amplitudes (SAOS) and by the 

presence of maximum points in the distribution of both components (in the MAOS field), as 

seen in Figure 2.15.d. It was noticed that the maximum points occur in the vicinity of the 

crossing point between the two components. This behavior has been noticed so far in the 

solutions of associative polymers [117], [116], [114], [128]. Some times, the distribution of 

the viscous model presents two maximum points, regardless of the parameter that it depends 

on -  [52], [169],  [107],  - this behavior being recorded for various 

materials:  homopolymer smelting - polystyrene, solutions of lecithin and urea, solutions of 

biopolymers, suspensions of anisotropic particles, suspensions with solid particles, peanut 

butter.   

The output signal deformed shape (Figure 2.14) and the evolution of the Lissajous 

diagrams (Figure 2.16) may also be related to the materials structure [31], [81]. Moreover, the 

area of the Lissajous figure may be an indicator for the energy accumulated in the inner 

network of the material and its viscous dissipation, strictly connected to the relaxation of 

stresses within the material [114], [143]. 

 

 
Fig. 2.15.  Variation of  complex moduli components depending on the type of rheological behavior 

associated to the material: strain thinning (a);  strain hardening (b); weak strain over shoot (c); strong 
strain overshoot (d) [114], [128]. 

a) b) 

c) d) 
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Fig. 2.16.  The Lissajous diagram for viscous and viscoelastic fluids at different values of the  

phase difference angle δ. 
 

The analysis of complex moduli, deformations of stress signals and evolution of 

Lissajous curves shape provides mainly a qualitative characterization of the non-linearity 

phenomenon and consequently a method for materials classification by associating their 

response with a certain type of rheological behavior [81], [82], [83], [114], [146]. In 

particular, in order to quantify their non-linearity, it is necessary to accurately establish a 

critical yield point (in simple shear tests), a critical specific strain (in dynamic tests) and an 

analysis of the harmonic components of the material response signal following a Fourier 

analysis [31], [44], [129], [130], [196], [233]. Some of the samples investigated in this thesis 

belong to the category of yield stressmaterials (see. Chapters 5 and 6). 

 

2.4.1. Large amplitude oscillatory shear tests 
 

In the case of a dynamic oscillation test with strain amplitudes  the 

response of the material (under stress) will have the form: 

 
              ( 2.53) 

where  corresponds to a linear yield regime and  corresponds to the 

non-linear regime. The application of the Fourier transform supposes the decomposition of 

the response function (shear stress) into a sum of odd harmonic contributions (the viscosity 

function being an even function by definition): 

 
( 2.54) 

where the superior harmonics indicate the dependence of the viscosity η0 on the strain rate,  

, which may be written under the form: 
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                         ( 2.55) 
 

( 2.56) 
The presence of the even components of the frequency spectrum (eq. 2.54) is generally 

associated to phenomena which are not directly dependent on material functions, but 

particularly they may be due to the lack of the material adherence to the solid surface. Data 

aquisition procedure for a suitable Fourier analysis supposes an initial determination of 

various parameters as:  data aquisition time step (to record the discrete signal); maximum 

harmonic contribution that can be recorded; the optimum signal-noise ratio for the case of 

oversampling. More details regarding this procedure can be found in the following papers 

[38], [71], [108], [212], [233], [246]. 

As it will be demonstrated throughout this work, the presence of the critical yield point 

associated to the non-linear behavior of complex fluids may also be emphasized by building a 

transitory flow curve based on several creep tests at various constant shear stress values [54].  

In this work, the non-linear character of the materials has been analysed by correlating the 

simple shear tests with the high amplitude oscillatory tests, setting a procedure to determine 

the type of material and the rheological behavior by qualitative analysis (Lissajous curves, 

form of the output deformed signal, range of linearity and non-linearity) and by quantitative 

analysis of the flow curves (determination of the critical values of the yield point, i.e. the 

values of yield stress and yield strain). The analysis and correct understanding of the non-

linearity mechanisms is necessary for an optimum design of manufacturing and processing of 

these complex materials. The correlation of the various testing procedures (viscometric simple 

shear, and dynamic tests) is important to correctly establish the rheological properties of the 

fluids and their non-linear range [54], [114], [196].  

 

2.5. ADHERENCE AND CAPILLARITY PHENOMENA 

 

The squeeze flow is associated with the theory of thin films due to the narrow testing 

gaps in which the process takes place (ex. plane case, parallel discs  and  ). 

Thus, for small squeezing velocities (small  numbers), adhesion florces and superficial 

tension have a significant influence on fluid film kinematics and evolution of the free surface 

formed at the edge of the gap (fluid-gas interface). End effects analysis in squeeze flow is 

necessary to quantify their influence on pressure distributions whithin the gap, respectively 

over normal force variation. It is well known that, in the squeeze flow, at the outlet area (edge 
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of the gap) a decrease of pressure in the fluid film is sometimes recorded (and it may 

significantly influence the resulting force). Equally, the accumulation of the fluid et the edge 

of the gap may create an additional force. Fluid motion both in the gap, and outside it, is 

directly influenced by adherence/slip conditions and surface tension influence. This paragraph 

is dedicated to the theoretical aspects of the capillarity surface tension phenomena. 

 

2.5.1. Capillarity phenomena and surface tension 

 
The lack of adherence and the presence of end effects (where capillarity plays an 

important part) influences directly squeezing flow, respectivley the pressure distribution in the 

gap. Capillarity is the property of a fluid to flow through narrow gaps without the influence of 

exterior forces. 

 
Fig. 2.17.  Action of cohesion forces over liquid molecules, inside it and at the  

liquid-gas interface. 
 

The capillarity phenomenon is determined by the dominating presence of the 

intermolecular adhesion forces between liquid and solid (solid-liquid interfacial stress ) 

compared to that of intermolecular cohesion forces inside the liquid and of the solid-gas 

interfacial stress  (Figure 2.17), and it may induce an ascending flow of water in a 

capillary tube (Figure 2.18.d and 2.19), opposed to the descending flow induced by gravity.  

Determined by the surface tension  (the specific linear stress manifested at the liquid-

gas interface) and the fluid-solid adherence (liquid-solid adhesion forces), the capillarity 

phenomena have numerous applications encountered in the natural environment and not only: 

breaking of the fluid jet and formation of drops (Figure 2.18. a); formation of spherical drops 

when breaking soap bubbles due to the tendency to minimize the area, respectively the 

number of molecules on the interface (Figure 2.18. b); a liquid columns rising in capillary 

tubes (Figure 2.18. c); transport and retention of fluids in plants capillaries (Figure 2.18. d); 

formation of foams and emulsions (Figure 2.18. e); floating small objects on the water surface 
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due to the balance between gravitational and surface tension forces (Figure 2.18. f); adhesion 

between the polymeric wires of a brush (Figure. 2.18. g). 

 
Fig. 2.18.  Effects of capillarity and superficial stress: breaking of a jet and formation of drops (a); 

formation of spherical drops when breaking soap bubbles (b) [24];  water colum rising in capillary 
tubes (c); transport and retention of fluids in plants capillaries (d); formation of foams and emulsions 
(e); floating small  objects on the water surface (f); adhesion between the polymeric wires of a brush 

(g) [19]. 
 

The influence of the capillarity phenomena in narrow gaps flows may be estimated by a 

dimensionless parameter called Capillarity Number, defined by the ratio between viscous and 

surface tension [19], [25], [65], [162], [168]: 

 
( 2.57) 

Surface tension forces are manifested on the contact surface between a fluid and a gas 

(free surface) or on the interface between two immiscible fluids, in this case being called 

interface stress forces (interfacial). In the case of an interface (liquid membranes) at rest, the 

state of balance is given by the offset of the normal force at the surface with the surface 

tension that act tangentially on the interface edge (Figure 2.19.a). The presence of the surface 

tension  creates a pressure difference  on the curvature of the area, expressed by the 

Young- Laplace relation depending on the area curvature [19], [73], [222]: 

a) b) 

g) f) 

c) d) 

e) 
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( 2.58) 

where R1 and R2  are the radiuses of curvature after every axis parallel to the surface, 

and is the medium curvature of the surface. 

 
Fig. 2.19. Deformation of any free area under the action of the superficial stress forces (a) and the 

raising phenomenon of a fluid in a capillary vessel of circular section  
(forming of meniscus at the free surface in detail) (b). 

 
In the case of rising of a liquid column in a capillary tube with circular section, the liquid-air 

surface inside the tube will be considered to have a spherical shape. The radiuses of curvature 

are identical, determining the curvature of the meniscus from the equation (2.58): 

 

( 2.59) 
where  is the contact angle of the capillary wall-liquid-air system, and  is the radius of the 

capillary tube. The hydrostatic balance relation supposes that the pressure at the level of the 

free surface should be equal to the pressure of the free surface in the capillary tube (with the 

approximation ):  

 
( 2.60) 

where  expresses the difference of pressure along the interface, the maximum 

height of the liquid may increase in the capillary tube  being reached in the state of balance. 

The approximate time step to raise the fluid column in a capillary tube is determined 

considering the flow as a quasi-static Hagen-Poisseuille flow in a tube with circular section 

[18], [136]: 

 

 ( 2.61) 
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One of the common methods to determine the superficial stress of a fluid, called the 

Wilhelmy plate method, supposes the partial immersion of a metallic plate in a volume of fluid 

and the determination of the superficial stress from the balance relation of the forces acting 

over the plate (gravity force, superficial stress forces and Archimedic force) [73], [222]: 

 
( 2.62) 

where   and  represent the wetted perimeter of the plate. Generalising this case, 

the same phenomenon happens when bringing in contact a solid disc of a given thickness and 

a volume of fluid (Figure 2.20. a).  

Under the action of capillarity forces, the fluid wets the edge of the disc, raising at 

the height . Out of the interface balance relation neighbouring the wall, considering a very 

small variation of the column height compared to Ox, we may determine its maximum value:   

 
( 2.63) 

with ; where   is a material constant, called capillary length and 

 is the radius of the disc. Figure 2.20.b describes the case of a fluid volume  existing in 

the gap formed by two solid discs of infinite radius ( ).  

In order to reach the state of balance and to form a stable interface, a force  is applied 

over the upper plate. In this case, the capillary pressure may be determined in the fluid 

volume by approximating the form of the drop with a toroidal surface, respectively: 

 

 
Fig. 2.20.  Rising of fluid on a solid wall (a) and formation of the meniscus (hydrodynamic bridge) 

between two solid surfaces (b). 
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The hydrostatic balance relation  (where  and Q is the 

volumic flow per unit le length of the drop perimeter) gives the expression of pressure in the 

volume of fluid: 

 
( 2.65) 

the expression of the surface tension being [136]: 

 
( 2.66) 

Eliminating from the expressions, the result is a pressure distribution independent 

on the viscosity of the fluid or of the time scale [136]: 

 
( 2.67) 

 

2.5.2. Adherence and contact angle 
 

The adherence of fluids to solid surfaces has a significant influence over their 

hydrodynamics and in the investigated dynamic process.  

Determined by fluid-solid adhesion forces, the property of adherence may be quantified 

by measuring the contact angle that fluid forms with a solid surface. In the case of the solid 

(S) - liquid (L) – gas (G) contact, apart from the superficial stress ( ), the adherence 

stresses of the two fluids at the solid surface also intervene: (Figure 2.21).  

 
Fig. 2.21.  The contact angle in a liquid-solid-gaseous system and its variation depending on the no 

slip properties of the solid surface (from total adherence – left side, to perfect slip – right side). 
 

The contact angle plays, in this case, the part of the boundary condition existing at the 

interface between fluid and solid, being determined by Young’s relation [65], [222]: 

 
( 2.68) 
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where   represents the solid-gas interfacial energy, represents the solid-liquid 

interfacial energy, and  is the liquid-gas interfacial energy or the superficial stress – 

surface tension. 

The no slip property is directly influenced by the superficial stress of the fluid and by 

the nature of the solid surface with which it enters in contact, the fluid dynamic control being 

achieved by modifying the adhesion forces (solid-liquid intermolecular forces). The 

specialized literature provides a multitude of methods to control the yielding dynamics in 

narrow gaps, used more often in the field of microfluidics, observing the conveyance of fluids 

in micro-channels: hydrophilic and hydrophobic areas; solid areas with specific no slip 

gradients; application of thermal gradients; modification of interface stress by application of 

an electrical field; use of reactive fluids (containing surfactants) that modify stresses at the 

solid-liquid interface; opto-adherence, etc. [18]. 

In this paper, the importance adhesion phenomenon control is motivated by the 

influence of this property on the performed rheological tests and to determine the properties 

of material. The theoretical models used to determine the rheological properties of the fluids 

are obtained in the hypothesis that the fluid adheres perfectly to the solid surfaces that define 

the flow domain. Thus, in a simple shear motion between two plates (the stationary lower 

plate with Vs = 0 and the upper plate moves on the Ox direction with the rate ), for 

perfect adherence, the fluid velocity at the wall  must be equal to the velocity of the walls. 

If the no slip condition is fulfilled, the velocity profile in the gap is modified (see Figure 

2.22); fluid velocity that is in contact with the stationary wall is no longer zero in case of slip 

(total or partial), which determines the slip length .   

 
Fig. 2.22.  Velocity profile on the fluid film thickness in a plane shear motion for various fluid-solid 

adherence conditions: no slip (a); partial slip (b); perfect slip (c). 
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The lack of adherence modifies fluid’s velocity profile, therefore: unrealistic 

predictions of the rheological properties may be obtained in rotational rheometers; slip 

phenomenon equally influences pressure distributions in squeeze flows and finally the 

measured thrust. The slip phenomenon may be theoretically quantified by determining the slip 

length , concept introduced by Navier in case of slip with . The tangential 

friction stress  in the vicinity of the wall may have equivalent formulas:  

 
( 2.69) 

 

( 2.70) 
Fluid velocity at the wall being: 

 

( 2.71) 
where  is the slip length, and  represents the wall friction coefficient (Coulomb 

friction coefficient) dependent on the material and the quality of  the solid surface [72], [182]. 
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CChhaapptteerr    33.. SQUEEZE FLOW 
 

 

The purpose of this chapter is to present analytical models and formulas used to 

represent the squeeze flow of a fluid between two parallel surfaces. The main scientific works 

published will be reviewed, mainly referring to the effects that determine deviations from the 

classical Newtonian theoretical solutions, respectively to the  influence of geometry, 

adherence, inertia and  fluid structure. 

The first investigation of the squeeze phenomenon dates from 1874, when professor 

Josepf Stephan drafts an analytical solution to the normal force necessary to distance two 

immersed plates, between which a fluid film is placed. This formula (eq. 2.45), was obtained 

in the hypothesis of a constant contact surface between fluid and plates (see Figure 2.12.a) for 

a purely viscous incompressible fluid. After a short while (1886), O. Reynolds deduces the 

“Reynolds approximation for lubrication” from the Navier-Stokes system and confirms 

Stephan’s theory [172]. J.R. Scott makes the transition from purely viscous fluids to fluids 

with a generalized Newtonian behavior in 1931, investigating the squeeze phenomenon of 

polymeric materials (resins) by means of an innovative experimental device called “parallel 

plate platometer”. He formulated the expression of the squeeze force for a generalized 

Newtonian fluid using the power-law model, a model used to confirm the experimental data in 

several studies of that time (Peek, 1932). The first dynamic squeeze test was performed in 

1933, by Eisenschitz and Philippoff for polymers and polymer solutions, using, for 

comparison, Scott’s analytical solution. 

The analytical solution for a constant fluid volume (eq. 2.46) appears later, in 1946, 

thanks to professors Diennes and Kelmm (see Figure 2.12.b). In 1964, D.F. Moore introduces 

another manner to investigate the fluid squeeze phenomenon, by immersing a rigid element (a 

solid plate) in a fluid bath and determining the pressure distribution that acts over it. This type 

of experiment is resumed later (1976) by D. Whicker and M. Rohde. They use a composite 

plate with an elastic layer following a practical industrial application: the contact between a 

tyre and the wet asphalt.  

The first study of the non-Newtonian viscoelastic fluids in squeeze flow is published by 

Tanner in 1965, and does not include inertial effects. They are considered later, in 1967, by 

D.C. Kuzma, in a study performed on purely viscous fluids, in 1976 by R.J. Grimm, and in 

1979 by Phan-Thien, who formulates a general solution of velocity and pressure distributions 
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for the oscillatory squeeze flow, including the inertial effects. In 1987, this issue is resumed 

by Bird, who writes an analytical formulation of squeezing force, derived from Stephan’s 

equation, formulation that emphasizes properly inertial contributions for Newtonian fluids. In 

1981, Chartei, Macosco and Winter make the first squeeze test in perfect slip conditions, 

using plates initially lubricated for the study of polymers in biaxial extension. Thermal effects 

are taken into consideration in a study performed by J.S. See and A.B. Metzner in 1982, by 

imposing a viscosity gradient on the thickness of the fluid film.  In the same year, Phan-Thien 

and R.I. Tanner make a numeric study for visco-elastic fluids using the Maxwell model and 

neglecting the mass forces and the boundary effects. A similar study is published in 1984 by 

Lee, Den, Metzner. In this study, the constant velocity squeeze flow modeled numerically, for 

a Maxwell model, determining the evolution of the fluid film thickness in time, obtaining 

oscillations in the distribution of the film thickness both experimentally, and numerically. 

They specify that an analytical solution cannot be found for this model, but they analytically 

formulate the same flow (2D plane and axisymmetric) for a Jeffreys model (Oldroyd B) using 

rate fields for Newtonian fluids, ignoring the retardation time and the non-linear inertial 

terms. In 1985 Phan-Thien makes a numeric study about viscoelastic materials.  

Partial fluid adherence phenomenon (known also as partial slip) is considered for the 

first time in the squeeze flow in the same year by Bagley and Christianson. In 1999, H. 

Martin, Laun and Hassager solve the squeeze flow study with “partial no slip conditions”, 

this time, by using the Power-Law model. In 1992, a first publication on the squeeze flow of 

elecrorheological (ER) fluids appears, belonging to Stanway and Sproston. One year later, 

Sproston and Williams write an analytical model for the oscillatory squeeze flow of ER fluids, 

imposing a critical yield point by approximating ER fluids behavior with the Bingham and bi-

viscous models. The targeted industrial applications were the fluid dampers and the electrical 

engines. An important work about viscoelastic fluids modelling in squeezing flow is 

published in 1996 by J.S. Field, M.W. Swain and Phan-Thien. They formulate a transfer 

function between the power spectrum and the oscillatory squeeze velocity, for experimental 

investigations performed on a prototype rheometer (Micro-Furier/MFR 2100). They also 

determine the complex modulus for various viscoelastic solutions (hialuronic acid, sinovial 

fluids, Boger fluids). In 1998, F. Yang performs a numeric study about visco-plastic fluids in 

squeeze flow, modeling the rheological behavior using the Herschel Bulkley and the bi-

viscous models also used by Adams in 1994 but considering the perfect slip (no adherence) 

condition for fluid-solid contact. 

A first analysis of complex fluids non-linear behavior in the squeeze flow is published 

in 2000 by N. Phan-Thien, S. Nasseri and L.E. Bilston. The study includes experimental 
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investigations on biological complex materials (pig kidneys) in oscillatory squeeze flow on 

the MFR 2100 rheometer. They determine an analytical expression of the squeeze force for a 

bi-viscous fluid and for the Maxwell model, however ignoring the components of the normal 

stress normally present in the equations of motion.  

In 2002, Jiang, H. See, Swain and Phan-Thien make a similar analysis for a composite 

material (impression material). They impose an arbitrary displacement profile in an 

oscillatory squeeze flow using the same Micro-Fourier prototype rheometer, determining the 

rheological behavior of the material during the curing process. In the last years, the tendency 

to miniaturize technological devices and to develop new materials that must be tested using 

very small samples (several micro-litres) has led to the diminishing of the spatial scale from 

the macro level to the micro or nano levels, even for the study of the squeezing flow. Thus, 

micro devices have been developed for the study of the squeeze flow, and micro rheometers 

for the analysis of the rheological behavior of fluids during squeeze flow.  

This chapter, presents several domains of applicability, the common geometries used in 

squeeze flow tests, the procedures used for the rheological analysis of fluids during squeeze 

flows, and some of the existing analytical models. Several analytical solutions of squeeze 

flow and the influencing factors over the main parameters deduced following the squeezing 

tests are presented throughout Paragraph 3.2. 

 

3.1. CURRENT STAGE OF RESEARCH 

 

3.1.1. Squeeze flow applications 

 
Squeeze phenomenon of a material (fluid or soft solid) is generated by the compression 

and deformation of the material between two solid surfaces (so called extensional biaxial 

motion). Generally, the gap between the pates is considered very small in comparison with the 

plates sizes, the flow is considered to take place in the thinn film approximation. The interest 

shown to this complex flow is due to various applications: the presence of this motion in 

various domains (mechanical engineering and tribology [152], rheology [72], biology, 

geology, constructions [221]); industrial processes of production or processing (hot stamping 

[249], gluing with adhesives, lithography by nano-printing [121]); compression of 

construction materials [208], food industry [79], [112]; natural and biologic processes 

(mastication, joints, valves, biofluids, earth settling), [216].  

As specified in Paragraph 2.3.3, squeeze flow between two plates is a motion generated 

by the application of a force over one or both surfaces or by applying an axial velocity on one 
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of the solid surfaces. The parameters that characterize the entire process are: film thickness, 

necessary squeeze force, squeeze velocity and pressure distribution in the gap. 

Applications in engineering  

At the macroscopic level, the squeeze flow has as main application the phenomenon of 

fluid lubrication in bearings, gear couplings, machines, car engines, naval engines, the fluid 

film preventing the solid-solid contact and the surface deterioration. Another important 

application is found in the fluid damping mechanism often encountered in the car building 

industry. The elasto-hydrodynamic contact of car tyres with the wet asphalt supposes the 

squeezing of the fluid among the skid-proof grooves of the tyre. At the microscopic scale, the 

applications are found in the so-called Micro-Electro-Mechanical Systems - MEMS: fluid 

micro-buffers, sensors, actuators [48], [50], [51], [62], [74], [176], [201], [226], [240] the 

manufacturing process of lithography by nano-printing of micro and nano-devices [37].  

Applications in biology and medicine  

The most obvious application is encountered in human articulations. The sinovial fluid 

is squeezed and sheared between the articular cartilages. The squeeze motion between porous 

layers has been studied intensely in relation to the biomedical applications.Apparently, the 

squeeze flow is also present in the blood micro-circulation. The contraction and relaxation of 

muscles triggers a squeeze flow of blood in veins and creates the necessary pressure to open 

and close valves. The squeeze phenomenon is also present during the closing of human 

cardiac valves and mechanical cardiac valves, used as prostheses in case of occurrence of 

certain cardio-vascular diseases. When the valve is closed, the blood is sheared and squeezed, 

forming the so-called squeeze jet which causes turbulence, cavitation and which deteriorates 

the artificial valves. 

Squeeze flow in Rheometry and rheology  

The squeeze process is a complex motion which includes both shear components (in the 

vicinity of solid walls defining the squeeze process) and elxtension components (in the middle 

of the gap). Due to these kinematic features, the squeeze flow has been intensely used along 

the years to determine the rheological properties of simple and complex fluids. In the 

specialized literature, there are numerous studies where the rheology of the various classes of 

materials is studied based on squeeze flows: 

 (i) The rheology of food products includes studies concerning chewing gum, mayonnaise 

[61], [112], mustard [251], peanut butter [42], [52], corn dough [179], honey, chocolate 

[52], syrup, milk scum, vegetal oils, etc. 

(ii)  Polymeric materials: studies on polyacrylamide, PEG, PIB, Boger fluids; 
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(iii) Rheology of cosmetic and pharmaceutical products: toothpaste, gels, lotions, emulsions 

[6], [160], [191]; 

(iv) Rheology of suspensions [1], [23], [67], [77], [198], [123], foams [207], pastes [2], [120], 

[131], [206]  and composites [203] in squeeze flows; 

(v) Elecrorheological and magneto-rheological materials in view of obtaining a larger yield 

point, as direct application for fluid dampers [86], [106], [138], [218]. 

Squeeze flow in Constructions and Geology  

The ground settling and the pressing of building materials is the most obvious 

application. Several types of materials have been studied in squeeze flow: granular, sand, 

concrete, mud, and other building materials [79], [208].   

 

3.1.2. Rheological squeeze tests and configurations of the testing geometries 
 

In the previous chapter, two configurations used in the squeeze flow have been 

specified: (i) constant contact surface or (ii) constant fluid volume. A third geometry supposes 

the penetration of the upper disc in a fluid volume situated on the lower surface. In this case, 

the surfaces do not have the same sizes (see Figure 3.1), the upper disc generally having a 

smaller radius than the lower one, and the form of the free surface is not known [72], [109], 

[214]. When using constant area geometry the fluid is pushed out from the gap, the main 

advantage being the fluid-solid contact surface that is considered “known” and “unchanged” 

during the test. Some experimental issues in this case are: (i) the accumulation of material at 

the edge of the gap, which creates additional pressure in the fluid; (ii) free surface evolution 

that may lead to significant end effects, introducing errors in the measurements. End effects 

influence is significant especially for small squeezing velocities, of high viscosity materials or 

in the case of high temperature gradients [155]. Generally, analytical formulations and 

numerical simulations of squeeze flow assume that free surface has always a cylindrical 

shape, although, experimentally it may be easily observed that the free surface varies 

according to the fluid properties (surface tension, contact angle, viscosity, elasticity). 

Another geometry is composed of two immersed plates (see Figure 3.2), geometry 

encountered in the case of fluid dampers and lubrication mechanisms (in this case the 

squeezing flow being considered imperfect), [109], [214]. Regardless the testing geometry, 

squeeze flow characteristic parameters remain the same: film thickness, squeeze force, 

pressure and velocity distributions. The control and measurement of these characteristic 

parameters is perfomed specialized pressure, force and displacement sensors, or by using 
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visualisation methods. The simplest testing procedure using squeeze motion supposes a 

constant descent velocity imposed for the upper plate, while the lower plate is kept at rest. 

 
Fig. 3.1. Axial-symmetric squeeze flow of a fluid between two solid surfaces of different sizes. 

 
Fig. 3.2. Immersed plates geometries (in the volume of fluid). 

 
The result of this test is an increase of the normal force (necessary to squeeze the fluid) 

once the upper plate moves towards the fixed plate and the gap diminishes. Based on such an 

experiment, several tests may be performed: (i) relaxing stresses within the material (ii) 

determination of the yield point or (iii) measuring the properties of viscosity or elasticity for a 

varied range of fluids. Another experiment implies the motion of the upper disc with a 

variable velocity in time, the motion having an imposed profile periodical in time 

(sinusoidal/random). Both types of tests are analysed in the following chapters of the thesis. 

 

3.2. THEORETICAL CONSIDERATIONS 

 

3.2.1. Analytical formulation of squeeze motion in various geometries 
 

3.2.1.1. Squeeze flow between two parallel discs 

 
As mentioned in the previous chapters, in a squeeze flow, a volume of fluid is deformed 

between two solid surfaces that get closer to one another, forcing the fluid out of the gap 

formed between them. Figure 3.3 illustrates a geometry that is often encountered in the case 

of the analysed phenomenon: the fluid is between two parallel plane surfaces of circular 

section, the lower surface is fixed, and the upper surface has a constant descent velocity.  
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The characteristic dimensions of the gap formed by the two surfaces are the height  

and the radiuses of the lower and upper surfaces, R, being equal in this case. In general, the 

height  is significantly smaller than the dimension of the surfaces that delimit the gap, the 

squeeze phenomenon being in many cases associated to the hydrodynamic motion of thin 

fluid films with applicability preponderantly in lubrication and rheology. 

 

 
Fig. 3.3. The squeeze flow of a viscous fluid of thickness h0 between parallel plane discs (axial 

symmetric flow with h0 << R,  vr << vz). 
 

Thus, the squeeze flow is described analytically by Reynolds Equation for Lubrication, 

derived from the Navier-Stokes System of Equations. The general hypotheses of 

hydrodynamic lubrication theory assume the validity of analytical formulations only for: (i) 

purely viscous incompressible fluids in laminar flow, hence, in Stokes Approximation; (ii) a 

geometry defined by solid and impermeable surfaces to which the fluid adheres. In this case, 

the characteristic Reynolds number is sufficiently small to neglect the influence of inertial 

forces: 

 

          (3.1) 
where  is the plate velocity (thus, the fluid velocity). Consequently, inertia and 

gravitational forces are neglectable in comparison with pressure forces and to those due to 

viscous friction. No other exterior mass force is considered to be an influencing factor on 

squeeze flow.  

The motion of a fluid film with ,  between two solid surfaces (see Figure 3.4) is 

characterized by the velocity components  and , the component  being neglectable. 

Moreover, the rate gradients on the directions Ox and Oy are neglectable compared to the rate 

gradient on the normal direction [12], [60], [182]. 
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Fig. 3.4. Flow of a viscous fluid in the thin layer of thickness  between two solid surfaces. 

 
Considering the previously mentioned hypotheses, the system of equations (Navier-

Stokes) has the simplified form (particular case of Stokes Approximation, completed by the 

Continuity Equation (see Chapter 2, eq. 2.5): 

 

( 3.2) 
The Reynolds equation for lubrication derives from 3.2 (plane case):  

 

              ( 3.3) 
where  is pressure distribution in the thin layer of viscous fluid. The boundary 

conditions are imposed by the surfaces velocities ( ,  respectively , ), the pressure 

outside the field being  [60], [140], [220]. In the case of a thin film squeezed between two 

parallel discs (see Figure 3.3), the radial velocity of the fluid is considered much larger than 

the descending velocity of the upper disc ( ), hence, the radial flow direction 

characterizes the motion. Since the solid surfaces move only in Oz direction and , 

relation (3.3) becomes (with , ): 

 

       ( 3.4) 
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Using the cylindrical coordinate system, with , one obtains:  

 
       ( 3.5) 

a successive integration, leads to:  

 
       ( 3.6) 

 
 

        ( 3.7) 
The integration constant C1 is nought cause the pressure must be finite in the axis (at 

), therefore:  

 
        ( 3.8) 

where  at . By integrating the pressure distribution, we obtain the necessary 

force to squeeze the fluid film 

 

              ( 3.9) 
respectively the expression (2.47) 

 
              ( 3.10) 

This formula has been published in the specialized literature ever since 1874, in a 

classical paper pertaining to Joseph Stefan, dedicated to the analysis of the squeezing of fluid 

films in dampers, for which the plate velocity is negative for the fluid compression ( ) 

and positive ( ) for the extensional motion [214]. For a constant imposed force  is 

obtained by integrating the variation of the film thickness in time (see 2.49); in a 

dimensionless form, the following expression is obtained: 

 

                                          ( 3.11) 
where  is the initial height of the upper mobile disc against the lower fixed plate,  

and  , with . For a constant descending velocity of the upper disc, the 

variation of the dimensionless force in time is given by the expression: 

 

              ( 3.12) 
where   and 
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              ( 3.13) 
with  . 

For an imposed sinusoidal displacement profile of the upper disc , 

where the amplitude is much smaller than the nominal gap  ( ), the expression 

(3.10) approximates correspondingly the force  between the plates (see Figure 3.5). 

Upper plate velocity and normal force variation in time are in these conditions expressed by 

the relations (2.51), respectively (2.52), previously described (see Paragraph 2.3.3). 

Considering that upper plate displacement is of the order of microns or smaller, in a quasi-

static approximation of the phenomenon, the fluid viscosity will have the expression: 

 

         ( 3.14) 
where   is the force amplitude, and  is a geometric constant. 

 
Fig. 3.5. The oscillatory squeeze flow of a viscous fluid of thickness h0 between parallel plane discs  

(axially symmetric motion, h0 << R,  vr << vz). 
 

We are specifying that the formula (3.14) is valid for ,  şi ; in 

the practical cases , ,  şi  .   

The real squeeze phenomenon is a complex flow, and the external and internal factors 

that may manifest their influence are numerous. From among them, the conditions of fluid-

solid contact, particularly the wall slip, play a major role over the local dynamics (see 

Paragraph 3.3.3).  

However, the influence of the end effects must not be neglected (considering the 

material properties: superficial tension, contact angle), nor the system inertia and the variation 

of viscosity for the generalised Newtonian fluids; note that the presented relations do not take 

these effects into account. 
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3.2.1.2. Squeeze flow between two parallel plates [182] 
 

Similarly, we may obtain the characteristic parameters of the squeeze flow between two 

parallel plates (see Figure 3.6), with the geometric dimensions  (length) and  (width). The 

pressure distribution for  is approximated in this case by the relation: 

 

         ( 3.15) 
By integrating the pressure distribution on the surface of contact, we obtain the 

expression of the squeeze force: 

 
         ( 3.16) 

 
Fig. 3.6. The squeeze flow of a viscous fluid of thickness h0 between two parallel plates of infinite 

length (axially symmetric motion, h0 << B, h0 << L,  vr << vz). 
 

3.2.1.3. The squeeze flow between annular surfaces  
 

In the case of an annular contact surface, the fluid-solid contact area is defined by the 

exterior diameter  and the interior diameter  of the ring.  

 
Fig. 3.7. The squeeze flow of a viscous fluid of thickness h0 between an annular surface and a plane 

circular surface (axially symmetric motion, vr << vz). 
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The pressure field is given by the relation: 

 

         ( 3.17) 
By successive integration, we obtain the expression of the squeeze force: 

 
         ( 3.18) 

 

3.2.1.4. The squeeze flow between a spherical surface and a plane surface [77] 
 

The thickness of the fluid film in the squeeze flow presented in Figure 3.8 (between a 

spherical surface and a plane one) may be expressed by the relation: 

 
         ( 3.19) 

The pressure gradient has the following form: 

 

         ( 3.20) 

 
Fig. 3.8. The squeeze flow of a viscous fluid of thickness h0 between a spherical surface and a 

plane disc, h0 << R. 
 

For this geometry, the squeeze force takes the expression: 

 

 

    ( 3.21) 
 

3.2.2.Influence of contact surfaces inclination 

 
The squeeze flow is generally modelled using the previously presented formulas, 

considering that the contact surfaces are parallel. Nevertheless, in the real setup there is not 
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always achived a perfect parallelism between the contact surfaces, the influence of their 

inclination being one of the most important aspects discussed in the analysis of experimental 

results for squeeze flow. Moreover, the plate parallelism ensures the condition of symmetry 

used to deduce functional parameters in the squeeze flow for most geometries used in 

rheometric tests: disc-disc, plate-plate, sphere-plate (see Paragraph 3.3.1).  

In general, experimental devices allow the adjustment of parallelism by various 

methods: positioning of the lower plate on a screw- ball, U-joint [75], [78], [90] lower plate 

incorporated in the housing of the device [118], [253], [254], use of a compoud flexture 

system [53]. The parallelism between the plates may be checked by using gauge blocks, ruby 

spheres, force cells, [75] - [78] optical measurement techniques by white light interferometry 

[53] or visually, observing the spreading of the fluid between the plates, in this case being 

necessary to use transparent plates [72].  

The influence of the parallelism of the surfaces has been studied since 1965 [172], the 

squeeze flow being associated to the immersion of a square plate in a volume of liquid (see 

Figure 3.9). It was noticed that the plate inclination angle decreases from the initial value αi to 

a much smaller value αn, corresponding to the position when the plate reaches the bottom of 

the tank. 

 
Fig. 3.9. The squeeze flow of a viscous fluid due to the immersion of an inclined solid plate into a 

fluid tank. 
 

Depending on the inclination angle, we may define the plate immersion velocity and the 

thickness of the fluid film present between the plate and the tank bottom. Following the study, 

it was decided that, together with the immersion of the plate, the plate velocity increases, and 

for very small values  the influence of the inclination over the pressure distribution may 

be neglected. Later it has been demonstrated that the inclination angle significantly influences 

the pressure distribution, shifting the pressure centre towards the inclined corner by up to 15% 

of the plate length, even for smaller values of  [232]. It has been confirmed that, for a 

rigid element, the immersion velocity increases at small values of the inclination angle. 
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 As regards the rheological measurements by the oscillatory squeeze flow using the 

usual geometry disc-disc, the plates lack of paralelism leads to the decrease of the normal 

force values, therefore to the sub-estimation of material viscosity, especially at small film 

thicknesses ( ). For the same material, in the same testing conditions, the 

use of geometries with upper spherical surface and a lower inclined plane (see Figure 3.12), 

leads to a significant improvement of the experimental results, fact which is experimentally 

and numerically demonstrated by [77].  

Also, the 2D analytical solution of the squeeze flow shows that the inclination of the 

contact surfaces leads to the loss of the condition of axisymmetry, the pressure distribution 

centre ( ) being at the distance  from the initial position (the initial position corresponds to 

the symmetry axis), a distance which varies according to the inclination angle (see Figures 

3.11-3.12). 

 The pressure distribution is dominant in the area with small film thicknesses, in the 

case of inclined plates, leading to an excessive increase of the normal force in this area. 

Considering that the pressure depends on the azimuthal coordinate [195], we may estimate 

that the force developed in the area with small film thicknesses exceeds the necessary value to 

compensate for the decrease of pressure in the area with large film thicknesses. As regards the 

spherical surface, the distribution of the pressure field and the squeeze flow are concentrated 

in the middle of the geometry, because the film thickness  at the centre of geometry is much 

less influenced by the plate inclination, compared to the disc-disc geometry. This has also 

been demonstrated for an inclined cone-plate geometry [76]. 

In conclusion, the use of a spherical upper surface or of an inclined cone-plate geometry 

is recommended when the parallelism of the contact surfaces cannot be ensured. The 

analytical solutions for an inclined disc-plate geometry, inclined plate-plate and inclined 

sphere-plate, are presented in Paragraphs 3.3.2.1 - 3.3.2.2. 

 
3.2.2.1. The squeeze flow between an inclined disc and a circular plane surface [77] 
 

For an inclined disc-plate geometry (Figure 3.10), the initial thickness of the fluid film 

is expressed by the relation: 

 
    ( 3.22) 

In this case, the pressure distribution becomes: 

 

    ( 3.23) 
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Fig. 3.10. The squeeze flow of a viscous fluid of thickness h0 between two discs. The upper disc is 

inclined with the angle α. 
 

By successive integration, the following normal force expression is obtained [77]: 

 

 

    ( 3.24) 
Adopting the notations 

 

    ( 3.25) 
the expression of the force may be written in a simplified form: 

 

    ( 3.26) 
Another approximation is the 2D solution where the lower plate is inclined. This 

approximation has as practical application the oscillatory squeeze flow performed 

experimentally on a system which allows the adjustment of the parallelism by inclining the 

lower plate, similar to the rheometer MFR 2100 used in this study. 

 Due to the plate inclination angle , a new system of coordinates is adopted, with the 

origin in the pressure distribution centre , at the distance  from the initial position (see 

Figure 3.10) corresponding to the symmetry axis. Thus, the initial thickness of the fluid film 

has the form (Figure 3.11): 

 

    ( 3.27) 
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Fig. 3.11. Plane squeeze flow (2D) of a viscous fluid of thickness h0 between two discs. The lower 

disc is inclined with the angle α. 
 

The analytical expression of the normal force is obtained by the double integration of 

the pressure distribution [76]: 

 

 

    ( 3.28) 
where the position of the pressure distribution centre is obtained for the imposed boundary 

conditions at the geometry boundaries , respectively : 

 

    ( 3.29) 
and  is an integration constant: 

 

    ( 3.30) 
3.2.2.2. Upper spherical surface [76] 
 

In the case of a plane geometry formed of a spherical surface and of an inclined 

rectangular surface (Figure 3.12), the thickness of the fluid film is defined as: 

 
Fig. 3.12. Plane squeeze flow (2D) of a viscous fluid of thickness h0 between a spherical surface and 

an inclined lower disc.  
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( 3.31) 
The distribution of pressures and the expression of the normal force are deduced  in the 

same way as in the previous case, but the position of the pressure distribution centre obtained 

for the imposed boundary conditions , respectively , is different [76]: 

 

( 3.32) 
where the following notations are used: , , , 

 , , , 

. 

Based on these solutions, the correction coefficients may be calculated for the devices 

used in experiments, where the surface parallelism and symmetry is assumed in advance. 

 

3.2.3. Influence of adherence 
 

The boundary conditions at fluid-solid contact allow the formulation flow motions in 

three main regimes: perfect adherence (no slip condition), no adherence (perfect slip) and 

partial slip/adherence condition (see Paragraph 2.5.2). The analytical formulations for the 

squeeze flows (see Paragraph 2.3.3, 3.3.1) assume the condition of perfect adherence on the 

contact surfaces. In general, the no slip condition is satisfied experimentally by using surfaces 

with sufficiently large rugosities (> 6 nm) [102] or sandpaper [4], [177], [190] being checked, 

in general, by performing viscometric rheological tests at various thicknesses of the fluid film 

[102]. In the case of the total slip condition (known in literature as perfect slip), the strains 

and stresses are considered to be uniformly spread in the material, and the expression of the 

squeeze force for incompressible Newtonian fluids becomes [161], [194]: 

 

( 3.33) 
for a constant contact surface and  

 

( 3.34) 
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for a constant volume of fluid [40], [161]. The perfect slip condition has been used for the 

study of the squeeze flow of visco-plastic [124], [239] and viscoelastic materials.  

This condition has been used mostly in the so-called squeeze tests in previously 

lubricated geometries (lubricated squeezing flow), where, between the tested material and the 

solid plate, a Newtonian lubricant layer is previously inserted [35], [39], [46], [105], [133], 

[134], [165], [213], [225]. In this case, the lubricant must be an ideal fluid (without friction) 

and it must remain in the gap throughout the test.  

These conditions are not very easy to achieve experimentally, their violation 

triggering the change of the perfect slip regime into partial slip [225]. The lubricant layer may 

be created by using materials exuding part of their composition [42], [52], [104]. 

The perfect slip condition may be imposed experimentally also by using smooth plates 

with very small rugosities and small friction coefficients (tephlon plates [41], [43], [61], 

[109], plastic, mica [102], brass [177], all these aspects being also connected to the properties 

of the fluids wished to be tested using these surfaces [102], [165], [177].  

Among the methods to obtain a surface with perfect slip properties are also found: 

chemical treatment of surfaces with tensioactive agents –surfactants [102]; covering of 

surfaces with molecule chains – polymers, proteins, sugars [102]; use of surfaces with 

different micro-topographies (the building of a micro-geometry on smooth surfaces) [21], 

[102], [238]; use of fluids with different concentration gradients on the film thickness; (also 

see Paragraph 2.5.2). 

In reality, the experimental tests cannot clearly demonstrate the validity of one of the 

two previously presented conditions – perfect adherence or perfect slip, generally meeting the 

partial slip condition (partial no slip).  

The theoretical formulation of the partial slip phenomenon may be made using two 

models: the model of the slip length or the model of limitation of the shear stress at the wall. 

The model of the slip length supposes that the slip velocity of the fluid at the wall is 

proportional with the local shear rate neighbouring the wall (see Figure 2.2.1), [72], [144], 

[173], [214]: 

 
( 3.35) 

In the squeeze flow, this condition is introduced for the radial speed of the fluid , 

which in conditions of no slip, must be null at the wall. For a disc-disc geometry, if 

, the fluid slips at the surface, and if , the fluid partially adheres to the 

surface (where   may have the maximum value of ).  

The expression of the squeeze force in the presence of the partial no slip condition is: 
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( 3.36) 
where  is a dimensionless parameter making the connection between the slip 

rate and the squeeze rate. For  the fluid adheres perfectly to the surface, for  it 

does not adhere to the surface, and for , the condition of partial adherence is 

fulfilled [144]. 

A similar expression of the squeeze force is: 

 

( 3.37) 
where  represents the slip coefficient: for  the fluid adheres perfectly to the surface, 

for  the fluid does not adhere to the surface, and for , the condition of partial 

no slip is met. The expressions (3.33 - 3.37) have been used in the squeeze flow to determine 

the influence of the perfect slip over the characteristic parameters of the squeeze flow. 

Another approach has been proposed by Kaylon and Tang in 2007 [127]: 

 
( 3.38) 

They used the method of the smallest squares in the numeric simulation with finite 

elements of the squeeze flow to determine the parameter that defines the perfect slip condition 

( ) and the viscosity of fluids (Newtonian and generalised Newtonian – the Power-law 

model and the Herschel-Bulkley model), initially departing from the expression (3.38) and 

formulating an objective function dependent on the initial values of the squeeze force. The 

model of limitation of the shear stress to the wall , assumes the existance of a critical value 

 , over which the no slip condition is no longer valid. The shear stress at the wall ( ) may 

be expressed depending on the yield point : 

 
( 3.39) 

where m is the friction coefficient. For  the fluid does not adhere to the surface and for  

 the partial slip condition is met. The slip model for plastic materials supposes 

, [3], [72] and for a Bingham fluid , [5], [72], [127], [209].   

The perfect slip issue has been intensely studied in the field of tribology, having as direct 

application the hydrodynamics of fluid films in bearings [55], [56], [153], [154], [188], [234], 

[244], [245]. Various theoretical and experimental studies demonstrated that the use of certain 

slip surfaces may increase load capacity in bearings (fluid film thickness and of pressure in 

the contact area), [55], [56], [87], [153], [154], [188], [244], [245]. 
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 For instance, in a shaft-bearing geometry (radial bearings), by optimizing the form and 

the dimensions of the surface with perfect slip properties, its positioning on the fixed surface 

and the correct choice of lubricants, an increase of the buoyant force will be obtained, as well 

as a uniform distribution of the pressure on the bearing surface and the increase of the fluids 

film thickness [55], [56], [87], [153], [154]. However, if the slip occurs on the mobile surface, 

pressure cannot be generated in the fluid film, so the bearing cannot be loaded. Also, a slip 

surface with too large dimensions compared to the geometry or to the presence of the perfect 

slip condition in areas with very small film thicknesses may lead to the decrease of the 

bearing performances [55], [56], [87], [153], [154], [188], [244], [245].  

If the slip phenomenon takes place in the same conditions on both contact surfaces 

(spindle and bearing), then the loading capacity exists, but it disappears when the operation 

velocity exceeds a certain value [234].  

An initial limitation of the shear stress is asserted to always lead to the reduction of 

frictions during operation.The alternance of slip-non slip surfaces, in parallel on the fixed 

contact surface, together with a reduced eccentricity between the shafts, increase the load 

capacity (buoyant force) [154].  

The influence of the type of lubricant and of its properties (viscosity, properties of 

adhesion to the surface) is also important. In general, lubricants with reduced viscosity are 

used, to reduce the friction phenomenon at the contact with the contact surfaces. The 

influence of the slip phenomenon over the prediction of the rheological behavior in the 

squeeze flow may become significant especially as regards complex fluids such as greases 

and pastes.  

The force measured in the squeeze flow is thus influenced by the presence of perfect 

slip areas. This phenomenon will also be noticed in the measurements presented in this paper. 

As previously mentioned the presence of surface roughness influences the local dynamics of 

the flow. The influence of the roughness has also been studied in the case of the squeeze flow 

[34], [110], [137], [165], [174], [210], [224].  

The use of rough surfaces has been proven to lead to the satisfaction of the no slip 

condition, to the increase of the force and to the squeeze time step compared to the case when 

the surfaces are finished and have a small friction coefficient [165], [174]. Also, in this paper, 

I will demonstrate the influence of the microstructures of the solid surfaces over the squeeze 

force, experimentally measured in the constant velocity squeeze flow (see Chapter 7). 
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3.2.4. Presence of inertial effects 
  

The inertial effects are another source of errors in the interpretation of the data obtained 

experimentally in the squeeze flow and therefore in the correct prediction of the rheological 

behavior of fluids. In squeeze flow, thin flow approximation (Reynolds equation for 

lubrication), the inertial effects are generally considered very small, neglectable in 

comparison with viscous forces and therefore excluded from most analytical formulations. 

Nevertheless, the specialized literature provides several theoretical formulations where the 

inertial effects are included [25], [103], [139], [219], [230].  

Although analytical expressions of the normal force in the presence of the inertial 

effects have been published since 1968 [139], the most well known formulation belongs to 

Bird [25], [161]: 

 

( 3.40) 
As one may expect, the inertia of the material has a significant influence over the 

results, especially for fluids with small viscosity and increased density, for squeeze flows at 

high velocity in the case of  viscoelastic fluids [148]. 

As regards the visco-plastic fluids, the presence of the inertial effects leads to the 

increase of the pressure values in the film and of the squeeze force [230]. Also in the case of 

viscoelastic fluids, the inclusion of the inertia in the theoretical formulation of the squeeze 

flow shows its significant increase even for small  numbers ( ), [219]. 

The inertial effects have also been studied in the case of an air „film” in squeeze flow, 

in an air buffer, but in this case there was no significant influence noticed over the pressure, 

flow or force distribution [215].  

 

3.2.5.Squeeze flow for generalised Newtonian fluids and viscoelastic fluids 
 

3.2.5.1. Visco-plastic fluids in the squeeze flow 

 
There are numerous rheological models used to analyse fluids with visco-plastic or 

viscoelastic behavior in the squeeze flow. In general, visco-plastic fluids are considered to be 

yield stress fluids [124]. The perfect plastic materials deform only if the strain tensor meets 

the „yielding criterion”, the best known yielding criterion being the Von Misses criterion.  

When the no slip condition is considered, the squeezed material flows in blocks (with 

plug velocity) under various forms (see Figure 3.13). 
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Fig. 3.13. Form of fluid blocks in the squeeze flow for visco-plastic materials: in the presence of a 

sheared fluid layer in the vicinity of walls (a) and in its absence (b) [72], [208]. 
 

The yielding is modelled using force expressions corresponding to the Power-law 

constitutive relation [109], [163], Bingham model [99], [167], [209], [207], [211], Herschel-

Bulkley model [164], [165], [193], [205], [239]. The most used rheological model is the 

Power-law ( ), the squeeze force having the expression [72], [127], [202]: 

 

( 3.41) 
In the case of a Bingham fluid (eq. 2.18) the squeeze force has the following expression 

 
( 3.42) 

for  (the material behaves like a plastic solid), where  is the 

number of plasticity. For  (the material behaves like a liquid), the expression of force 

becomes [72], [208]: 

 
( 3.43) 

The most important phenomenon analysed in the squeeze flow of visco-plastic fluids is 

the transition regime, aiming at determining the values of the critical yielding stress and of the 

fluid blocks with visco-plastic behavior [99]. Apparently, the yield is initially localized in the 

stagnation points of the yield neighbouring the solid surfaces [72], [167], [208].   

The loading of visco-plastic fluid films (force necessary to onset the squeezing) 

increases as function of yielding stress value [99]. Also, the squeeze force grows at high 

Bingham numbers both in the disc-disc geometry, and in the plate-plate geometry, where 

 is defined – the dimensionless Bingham number – in a axially symmetric 

squeeze geometry [124], [167]. Numerical studies performed using the Bingham model, 

showed that the transition from the solid-visco-plastic regime to the liquid one introduces 

discontinuities in the constitutive formulation, respectively diverges the numeric computation. 
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Therefore, two constitutive models are proposed to solve this discontinuity: the 

Papanastasoiu constitutive model, used for the numeric solution of the squeeze flow, and the 

investigation of the evolution of the fluid-gas interface [124]; the model of the bi-viscous 

fluid which apparently behaves as a Bingham fluid [124], [239]. Several publications have 

proven that concentrated suspensions of solid spheres sometimes have in the squeeze flow a 

visco-plastic behavior, the experimental results of the normal force variation being 

approximated by the Power-law model, respectively the equation (3.41), [58], [67].  

Also, the squeeze phenomenon of a fluid between two spheres in relative motion of 

proximity has been theoretically studied using the Power-law visco-plastic model taking into 

account an extended field of applicability: thin films lubrication between spherical 

geometries, micro-rheology of suspensions, phenomenon of settling and filtering, 

determination of the complex dynamics of particle cohesion phenomena, formation of clusters 

(particle agglomerations) or alignment of yielding solid particles [113], [237].  

 
3.2.5.2. Viscoelastic fluids in squeeze flow 

 
There are numerous attempts to model the viscoelastic behavior in the squeeze flow, but 

a clear and precise method is not yet available. The lack of analytical solutions and the 

complexity of numerical simulations have to be considered when the experimental results are 

analyzed. The first method of analyses is considering that Newtonian velocity distribution is 

not influenced by the fluid elasticity. The viscoelastic stresses are calculated from the integral 

constitutive model describing the fluid kinematics of viscous flows between the parallel 

planes [72], [247]. 

A second method assumes a material formed of multiple planes (fluid layers) initially 

parallel with the contact surfaces, planes which remain parallel during the squeeze (bareling). 

Thus, the velocity distributions may be derived from the continuity equation for a Newtonian 

fluid or of the Power-law type (considering geometry symmetry) provided that the axial 

velocity vz should be independent of r. Nevertheless, the fluid “layers” deform during the 

flow, as suggested by [32]. Regardless whether the Reynolds approximation for lubrication is 

used or not, a complex system of differential equations with partial derivatives will be 

determined. The viscoelastic rheological behavior described by the upper-convected Maxwell 

relation, can be analyzed in squeezing only by numerical solutions [148], [186]. The behavior 

of a viscoelastic fluid may be also associated with the Jeffreys or Olroyd-B model, 

considering the velocity distribution of a purely viscous fluid and very small values of the 

squeezing velocity [148]. Another model used is the Lodge model for soft materials such as 
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rubber (Lodge rubberlike liquid). In the case of the Maxwell model, a set of non-linear 

equations is obtained, with partial differences that may be solved by the perturbation solution 

[148] or numerically by finite elements [66], [148] or finite differences [72], [186], [184], 

[185], [183]. When single-integral viscoelastic models are used, by imposing the perfect slip 

condition at the fluid-solid interface, the equations of motion and the boundary conditions are 

associated to the bidirectional elongation motion (valid for small Re numbers), the normal 

component of the stress in the fluid , being considered dependent on the deformation 

gradient and on the Finger Tensor. For a detailed study of this method, the paper [72] is 

recomended.  

Elasticity influence on normal force values is conditioned by the manner chosen to 

impose the squeeze motion: (i) imposing a constant squeezing force (so that the motion is 

characterized by the dimensionless parameter Wiesenberg, ); (ii) imposing a constant 

squeeze velocity (so that the flow is characterized by the dimensionless Deborah Number, 

). In the first situation, for very small strain rates (high observation time steps), the 

squeeze force increases compared to the solution for purely viscous fluids ( ), [72], 

[148]. Also, velocity distributions are influenced by the presence of elasticity, the velocity  

distribution on radial direction being flattened and deformed together with the increase of the 

 values, at constant  [186]. In the second case, the force necessary to squeeze the 

material is reduced compared to the case of purely viscous fluids, regardless of the value of 

the squeeze velocity (initially considered). This conclusion is supported by several studies, 

both experimentally [148] and numerically; regardless of the manner in which the theoretical 

analysis has been performed – the results being obtained either by the perturbation method 

[32], or iteratively by numeric calculation, with or without including the inertia, gravity or 

boundary effects [32], [148], [184], [185], [186]. Comparing the Maxwel fluid model with the 

Oldroyd-B fluid model, it was demonstrated that the force necessary for the squeezing is 

larger than for the Oldroyd-B fluid [184]. For a imposed constant velocity, no oscillation is 

noticed in the distribution of force (or of the film thickness) for Oldroyd-B fluids, but a 

propagation of the oscillations in the response of force or film thickness in time is prescribed 

for the Maxwell model (generated both by the inertia and material elasticity), [184], [148]. 

Boger fluids (with constant viscosity and elasticity) are modelled by Oldroyd-B relation. 

In this case, the presence of elasticity triggers the decrease of the squeeze flow compared to 

the Newtonian fluids (with the same viscosity) [184], [185]. Also, the viscoelastic behavior of 

soft solids has been analysed in the squeeze flow by [122], [183]. 
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CChhaapptteerr    44.. NUMERICAL MODELLING OF SQUEEZING FLOW 

PHENOMENON 
 

 

The numerical simulation of squeezing flow has been performed by two ways: (i) 

modeling the flow with a commercial CFD (Computational Fluid Dynamics) code, Fluent v. 

6.3 where the flow is characterized by the Navier-Stokes Equations; (ii) modeling the 

newtonian and shear-thinning rheological behavior of fluids in oscillatory squeeze flow with a 

special code created with Fortran 95 v. 5.7 who’s using a Generalized Reynolds Equation to 

approximate the motion.  

From all available commercial products, Ansys Fluent is the most performant in solving 

the motion of real fluids in different flows, being used in both academics and industrial areas. 

Fluent software allows its users to study different cases like: a dynamic and moving mesh, 

turbulence study, acoustics, reacting flows, heat transfer, phase change, and radiation, 

multiphase flow and data post-processing.  

Being based on applying and using the Finite Volume Method the use of Fluent implies 

the presence of a meshed flow domain and solving locally the equations that describe the 

flow, principally the Continuity Equation, the Navier-Stokes System of Equations and the 

Energy Equation [33], [93].  

The second numerical code is a finite element code created in Fortran 95, and used 

with dedicated console software, Winteracter 7.10. The simulations were performed for 

Newtonian and generalized-Newtonian fluids, respectively the Careau-Yasuda model. 

The numerical simulation of squeezing flow motion follows two imperative stages 

required generally for any performed numerical simulation of a flow: (i) the validation of the 

numerical solution within a simple flow geometry (2D, axial-symmetric in this case) for both 

simple and oscillatory squeezing flow by using boundary condition for whom an analytical 

solution is available; (ii) validation of the numerical solution for special boundary conditions 

(slip at the boundary, different values of  the fluid-solid contact angle, the use of two fluid 

phases and the investigation of interface evolution in different conditions) by comparison with 

experimental investigations and real-time visualizations of the squeeze flow motion during 

performed experiments. 
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4.1. DESCRIBING THE NUMERICAL PROCEDURES – NUMERICAL CODE FLUENT 
 

The numarical simulation of the squeeze flow involves an initial process of domain 

construction and meshing. The Finite Volume Method (FVM) implemented in Fluent code 

considers the flow domain divided into a finite number of control volumes, each volume 

being associated to a single node of the geometry mesh [227]. The simulation of the flow is 

performed by solving locally the equation of motion (2.4) where the extra-stress tensor is 

expressed by a generalized Newtonian model (2.12). 

For a pure viscous incompressible fluid the code solves the Navier-Stokes equations (as 

a particular form of the equation of motion) in parallel with the mass conservation equation 

for incompressible fluids (2.1) for the whole flow domain and in each node of the mesh. In 

oder to solve the partial derivative equations, FLUENT uses two types of numerical models 

Density Based Model and Pressure Based Model, which use the same FVM but a different 

methodology for linearise and solve the equations.  

The Density Based Solver couples the continuity, momentum and (if needed) energy 

and transport equations, solving them simultaneously as a set or a vector of equations, using 

either a implicit or explicit method to couple the equations. The Pressure Based Solver, used 

for the present study, uses a special algorithm (belonging to projection method) which implies 

an iterative computation process of the nonlinear set of equations, computing separately the 

velocity and pressure gradients [49]. Practically the computed field is corrected trough the 

pressure terms of the continuity equations and momentum conservation until the convergence 

criterion for the continuity equation is obtained [93]. 

The numerical code disposes of three computation models used for the determination of 

a scalar parameter gradient  (where  may be the pressure, velocity components, 

temperature)  for one of the mesh elements El: (i) Green-Gauss Cell Based Model - GGCB; 

(ii) Green-Gauss Node Based Model GGNB; (i) Least Square Model – LS. The choice of the 

right computation model for the analyzed flow motion leads to more precise results and 

reduced simulation time. In the case of Green-Gauss Theorem based models, the gradient in 

current element El is determined as  the arithmetic average of the values computed in the 

neighboring cell centers ( ): 

 

( 4.1) 
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For the GGCB scheme the values are computed for the neighboring cells (elements) 

unlike the GGNB scheme for which the values are computed for the neighboring nodes of the 

element’s neighboring cells. The node-based averaging scheme is believed to be more 

accurate than the cell-based scheme, being recommended for unstructured meshes (triangular 

and tetrahedral meshes) [93]. 

The numerical simulations performed for the squeezing motion are divided in two 

principal categories: (i) numerical investigations in which a single phase of fluids fills the 

domain; (ii) the numerical modeling of the free surface found at the end of the gap by using 

two fluid phases to fill the flow domain, within Volume of Fluid Model. Both methods are 

applied for flow computation in case of constant velocity (simple) and oscillatory squeeze 

flow (OSF) motions. Velocity and pressure distributions (thus the normal force) are 

exclusively dependent on the vertical motion of the solid boundaries (see. Figure 2.11 - 2.12). 

The vertical displacement of the upper wall may be modeled by imposing a time-dependent 

profile for both analyzed motions (constant velocity or oscillatory squeezing), implying the 

use of a dynamic deformable mesh for the geometry.  Likewise, for the constant velocity 

squeeze flow the motion can be described by a quasi-steady approximation of the unsteady 

flow, in which, for different values of the fluid film thickness, the displacement of the upper 

wall is associated with a vertical flow of the fluid by imposing as boundary condition a 

constant entrance velocity of the fluid on the whole upper wall (Figure 4.1). In this case the 

computations are performed with a fixed mesh. 

 
Fig. 4.1. Quasi-steady approximation sketch of the unsteady constant velocity squeeze flow. 

 
All numerical simulations are performed using same hardware resources, two servers with 

eight processors runing in paralell during the computations. 

 

4.1.1. Volume of fluids method (VOF) 
 

Free surface evolution and the influence of the end effects on the computed parameters 

is performed using the Multiphase Module available in the numerical code, which allows the 

analysis of steady and time dependent flow regimes in the presence of multiple fluids [93], 

p0 p0 

V= 0 

Vz  

z 

r 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 
Chapter 4. Numerical Modelling of Squeeze Flow Phenomenon 

 

  80  
  

[100], [223]. VOF is generally used to compute time-dependent flows of  two or multiple 

imiscible fluids, solving a single set of equations of motion for all the fluid phases’ occupying 

the analyzed domain, tracking the volume fraction of each of the fluids throughout the 

domain, in order to compute the interface between them [93].  

Tracking interface evolution in time is made through the solution of the continuity 

equation for the volume fraction   of one (or more) of the phases. The volume fraction 

equation may be solved either through implicit or explicit time discretization [93]. Face fluxes 

interpolation can be performed using either an interface reconstruction scheme (Geo-

Reconstruct - GR, Donor-Aceptor, DA) either a finite volume discretisation scheme (First 

Order Upwind, Second Order Upwind, CICSAM, Modoified HRIC, and QUICK). 

 
Fig. 4.2. The computation of cell volume fraction αA and the interpolation of two fluid phases 

interface. 
 
As mentioned before, the interpolation of the interface between two phases (A, B) 

requires firstly the computation of the volume fraction of the principal phase A (αA) in each 

element, establishing if the phase occupies or not the investigated cell (volume element): 

 

( 4.2) 
To determine the shape of the interface the code solves a particular solution of the 

continuity equation in order to determine the volume fraction, including the mass transfer 

between the two phases ( , ): 

 

         ( 4.3) 
The volume fraction equation may be solved as mentioned trough an implicit or 

explicit time scheme depending on the procedure used for interface approximation [93], [33], 

Fluid A 

Fluid B 
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[159]. From all numerical interface capturing schemes the most performat are GR and 

CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes). GR sheme uses a 

liniar interpolation on small sectors for the reconstruction, the interface having a linear slope 

in each cell [93]. CICSAM is a high resolution scheme [180], [181], [229] based on the 

Convection Boundedness Criteria [63], [223], [227] and two differentiation methods Ultimate 

Quickest  and Hyper-C. The method introduces a weighting factor which takes into account 

the slope of the interface (relative to the main flow direction) and switches from forward 

differentiation to backward differentiation methods if the minimal angle between the slope of 

the interface and the principal flow direction is bigger than 45o [180], [181], [223], [229]. 

Besides, in the presence of two main flow directions (like for squeezing flows) the 

volume fraction is computed successively for each of them.  CICSAM method allows a better 

control of the interface but sometimes produces a lag in pressure distribution [181], [229] or 

the lost of interface curvature when the flow directions are not aligned with the mesh [63]. 

When using an explicit method, for any unsteady computation, the VOF model uses an 

internal time step (different form the one indicated by the user, which is beeing used for the 

computation of transport equations) for the interpolation of the interface. The internal time 

step is ajusted and refined automatically by the numerical code depending on the maximum 

value imposed for the Courant Number – CN (CN is computed for each element that contains 

the interface and their neighbors). The Courant Number is a dimensionless parameter which 

compares the time step indicated by the user (Ts) to the characteristic time of transit, of a fluid 

element across a control volume: 

 

( 4.4) 
where  is the time step of simulation,   represents the grid dimension and  

is the velocity in which a control volume crosses through the grid element. 

 

4.1.2. End Effects. Superficial tension and contact angle in numerical simulation of real 

flows. 

 
Fluid surface tension is taken into account by adding a source term to the momentum 

equation, which describes the equilibrium between the forces which are present on the 

interface, using the continuous surface force model – CSF. The presence of surface tension 

creates a pressure difference on surface curvature, expressed by Laplace & Young Equation 

[93], [222]: 
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( 4.5) 
where  and  are the curvature radius of the surface and  is the mean curvature (see. 

Paragraph 2.5). For a two phase system the specific force volume depends on the parameters 

which define the interface:  

 

( 4.6) 
where   is the mean density,  is the volume fraction gradient for the principal fluid 

phase and  are the densities of the two phases. The presence of an imposed value for the 

contact angle implies curvature adjustment near the fluid-solid contact area trough a dynamic 

boundary condition (by modifying the normal at the surface into the cells located near the 

walls depending on the imposed contact angle), [30].  

Surface tension and contact angle influences can be estimated as function of  some 

dimensionless parameters: (i) at low  numbers ( ), when there is no main flow 

direction, the influence of surface tension can be neglected for very large values of   

( ); (ii) for  the influence of surface tension can be neglected for  [12], 

[124]. For both constant velocity and oscillatory squeezing the motions analised in the present 

paper are characterized by very low Re, therfore surface tension influence may be quantified 

by  values [93].  

In the case of the oscilatory squeeze flow  values are very small, as example for a 

displacement signal characterizaed by  and ,  for 

fluid viscosity , (mineral oil). For the performed experiments and numerical 

simulations the  values are much smaller since the maximum oscilation amplitude is 

, all the other fluids tested are more viscous.  number is also small for the 

constant velocity squeeze flow, and the small values of   number highlight a significat 

influence of surface tension on the computed parameters. 

 

4.2. GEOMETRY DEFINITION AND FLOW DOMAIN MESHING 
 

For the present study, the construction of all geometries and their meshing has been 

made using preprocessor Gambit 2.3.16. The unsteady motion has been simulated using 

multiple geometries adapted for both dynamic (unsteady, deformable mesh) and quasi-steady 

(undeformed mesh) approximations of the squeezing phenomenon.  
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The flow area includes two fluid phases when investigating the influence of end effects 

and interface evolution in time for the dynamic approximation, the geometry being adapted to 

different shapes of the free surface, when using a quasi-steady approximation to investigate 

the end effects. All geometries used for the simulationshave a 2D axial-symmetric 

construction, the symmetry axis corresponds to the Ox coordinate (which defines the vertical 

displacement of the upper wall). The mesh is using quadrilateral elements for all geometries, 

the excepcion beeing made for the quasi-steady aproximation of the free surface influence 

where the shape of the geometry requires the use of triangular elements (see Annex 5). 

 

4.2.1. Description of geometries used for single phase numerical simulations 

  
The unsteady simulation of the squeezing motion uses the dynamic deformable mesh, 

the upper plate motion being modeled trough an imposed displacement profile. For one phase 

simulation the geometries are S1, S2 and S3 (see Figure 4.3 and Figure 4.4), using the same 

boundary conditions for both constant velocity and oscillatory squeeze flow. The small 

amplitudes of the sine displacement profile (correlated with the experimental investigations) 

require a refined mesh near the upper wall, in order to keep the computational time step at a 

reasonable level. The force is computed at the lower wall (correlated with experimental 

investigations), hence the refined mesh is also needed in this area. The use of very small cell 

dimension on Ox direction implies the use of small dimensions of the cells also for the Oy 

direction in order to maintain a small mesh aspect ratio and thus reduce the residuals during 

computation. For the same purpose, the radius of the virtual geometry was reduced from it’s 

original size (experimental parallel plate geometry): , .  

Thus, the squeezing force computed on the lower wall has been corrected automatically 

by the numerical code with a amplification factor , by imposing specific density, velocity 

and area values in the available Reference Values Menu: 

 
         ( 4.7) 

According to (4.8)  is the ratio between the real geometry radius and the virtual 

geometry radius to the 4th power: 

 

         ( 4.8) 
S1 geometry has been rebuild in the same conditions for each of the fluid film thickness 

analyzed,  Same procedure was applied for the 

transient (dynamic) modeling of the constant velocity squeeze motion (Figure 4.4). 
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.

 
Fig. 4.3. The S1 geometry used for the numerical simulation of the oscillatory squeezing flow, 

boundary conditions definition and the meshed flow area (see also Annex 4). 
 
At small squeezing velocities ( ) a reduction of the initial film thickness 

has found to be necessary to reduce computational time, thus for  S2 geometry 

has been used and for  the S3 geometry has been used (where S2 corresponds 

to  and S3 corresponds to ). 

 
Fig. 4.4.  S2 and S3 geometries used for the unsteady constant velocity squeeze flow, boundary 

conditions definition and the meshed flow area. 
 

Since during a simulation the upper wall displacement covers almost the whole film 

thickness (from 1 mm to 0.01 mm, respectivley from 0.5 mm to 0.01 mm) mesh refinement 

near the walls is no longer necessary to achieve proper results. However to assure the 
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precision of the computations and the quality of the mesh the aspect ratio is kept sufficiently 

small.   

As mentioned before, the numerical simulation of the constant velocity squeeze flow 

has been made also by using a quasi-steady approximation (with undeformed mesh). For this 

study a number of fourteen geometries have been used, geometries with similar construction 

as the ones presented in Figure 4.4.  

The geometries have a plane 2D axial-symmetric construction, each of them 

corresponding to a certain film thickness . From each simulation a single 

force value has been computed, depending on the imposed squeezing velocity (

) and film thickness . Figure 4.5 describes the geometry CS1 

corresponding to a film thickness of . For the geometries corresponding to 

  the number of elements on  direction is 100 and the number of 

elements on  direction is 2150; for  the number of elements on  

direction is 10 and the number of elements on  direction is 2150; for  the 

number of elements on  direction is 10 and the number of elements on  direction is 

21500. Boundary conditions are described in Annex 4. 

 
Fig. 4.5. CS1 geometry used for the quasi-steady approximation of constant velocity squeeze flow: 

boundary conditions definition and the meshed flow area (a); variation of geometry dimensions 
depending on the initial film thickness (b). 

 
The constant velocity squeeze flow, been investigated by using a quasi-steady 

approximation and different geometries for whom the outlet pressure zone (the exit of the 
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gap) has been modeled in multiple ways in order to describe different free surface shapes 

observed during the experiments (see Annex  5).  

 

4.2.2. Description of geometries used for multiphase numerical simulations 
 

Squeeze flow modeling in the presence of two fluid phases implies the enlargement of 

the flow domain by adding a supplementary area at the end of the geometry (fluid outlet 

zone). Therefore the oscillatory squeeze flow in the presence of two phases has been modeled 

using VOF1 geometry (see Figure 4.6) for an initial film thickness of . 

Geometry dimensions have been reduced in comparison to the real experimental model 

(similar to previous simulations presented) the force signal being corrected trough the 

Reference Values Menu of the numerical code. 

 
Fig. 4.6. VOF1 geometry used for two phase simulation of oscillatory squeezing flow: construction 

and meshing of the flow area (a); defining the fluid phases (b). 
 

For the constant squeeze velocity squeeze flow the multiphase simulation has been 

realized using VOF2 geometry presented in Figure 4.7. The aspect ratio of the mesh is equal 

tu unit for the whole flow domain in order to assure mesh quality and precise results. 

Geometry dimensions describe closely  the real model except the outer (air filled) area which 

is smaller than the real one ( , ) in order to reduce the 

total number of cells and thus the simulation time.  
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The boundary conditions were modified in order to obtain accurate results which can 

describe the real flow, investigating the influence of slip condition by imposing a small value 

of the wall shear stress either for the outer lower wall either for the whole lower surface 

(lower wall and external lower wall). Also, the external wall and the margin have been 

defined using different boundary conditions.  

The whole process of construction and meshing of the flow areas presented followed the 

reduction of geometries dimensions, thus the reduction of the total number of elements, for 

each geometry. The effective computational time needed for a simulation of the oscillatory 

squeezing flow depends on the number of iterations that the code does for each time step 

(being between 20 and 100 in the case of performed analise) and the magnitude of the time 

steps imposed by the user for the computation. The mono phasic simulations were performed 

by using a time step of  for the oscillatory motion and  

 for the constant velocity squeeze flow. Boundary conditions are described in Annex 4. 

 
Fig. 4.7. VOF2 geometry used for two phase simulation of constant velocity squeezing flow: 

construction and meshing of the flow area (a); setting the boundary conditions (b); defining the fluid 
phases (c). 

 
The size of a time period for the oscillatory squeeze depends exclusivley on the 

oscillating frequency, varying between  (at ) and  (at ). To 

achieve a flow stability (the reduction of residual errors and thus, the convergence) one needs 

to perform at least two time periods, therefore it is necessary to perform between 200 and 

1000 time steps.  
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For the constant velocity squeeze motion in order to cover the whole displacement 

profile there are necessary between 1000 ( ) and 100.000 ( ) time 

steps. In the case of multiphase simulations the time step was reduced, due to truncation errors 

appeared during the simulations, achieving very small values . Such 

a numerical simulation can take around 48 h for the mono phase flows and as far as a week 

for multiphase simulations, depending on the available hardware resources.  

The reduction of geometries dimensions by preserving a sufficiently number of 

elements and nodes of the flow area (maintaining the mesh quality) leads to a significant 

reduction of the computational time and at the efficiency of the investigation process of such 

flows. 

 

4.3. NUMERICAL STUDY OF OSCILLATORY SQUEEZE FLOW 

 

The oscillatory squeeze flow has been investigated numerically for Newtonian and 

generalized Newtonian fluids. The solutions obtained from mono phasic simulations of 

Newtonian fluids were compared to the analytical predictions, to establish a validity domain 

for the analytical expression of the thrust (eq. 2.52) by quantifying the differences obtained 

between the two theoretical approaches and also the experimental measurements. In the case 

of generalized Newtonian fluids the influence of shear-thinning rheological behavior on the 

squeezing force and velocities distributions in the gap has been investigated. 

 

4.3.1. Comparative analysis between numerical solutions and theoretical predictions for 

Newtonian fluids 

 
The simulation was performed using the rheological parameters of a pure viscous 

mineral oil with a shear viscosity of . The rheological characterization of the 

fluid was performed within simple and dynamic shear tests using Physica MCR 301 

rheometer with different testing geometries. 

 Considering that the samples are pure viscous the analyze followed the temperature 

dependence of the viscosity coefficient (Figure 4.8). It has been noticed that depending on the 

temperature variation the viscosity at a constant value of   exhibits a variation within 

the domain , probably due to the fact that temperature control is 

realized only for the lower plate of the testing geometry (see. Paragraph 5.2.1.2).  
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Even tough the testing gap used for the determination of the sample’s shear viscosity is 

small ( ), we must consider the existence of a small temperature gradient on in the 

gap, which may influence the viscosity measurements. 

For the performed numerical simulations the viscosity coefficient of the mineral sample 

has been chosen to have a constant value of . 

 
Fig. 4.8.  Viscosity dependence on the testing temperature for mineral oil. 

 
To establish a validity domain of the analytical model the investigations performed 

followed the determination of the relative error between the numerical results and the 

analytical predictions. Therefore the maximum amplitude of the force signal obtained 

numerically was compared with the maximum amplitude of the force signal predicted by the 

theoretical formulation. 

 
Fig. 4.9.  The maximum amplitude of  the force signal obtained by numerical simulations and using 

the analytical expression for different values of , , and a constant input amplitude of  
. 

 
The relative error furnishes a quantitative analyze of the squeezing motion, being 

calculated as follows: 
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         ( 4.9) 
where   and    represents the maximum force amplitude obtained numerically and 
analytically.  

It can be noticed (Figure 4.9 - Figure 4.11) that the limitation of the analytical 

expression of the normal force is dependent on the three principals parameters describing the 

motion: the initial film thickness , oscillation frequency  and oscillation amplitude . 

Film thickness has a significant influence on the force variation (Figure 4.10), the relative 

error increasing with increasing the film thickness. Moreover all the results obtained trough 

numerical simulations are superior to the ones predicted by the analytical model. For  

 the relative error increases as somehow expected since the analytical formulation 

derives from Reynolds Lubrication Approximation for thin films. Likewise, it can be 

observed that  is acceptable only for small oscillation frequencies  and 

small oscillatory amplitudes. Actually in order to keep  (Figure 4.11) and thus 

maintain a good correlation between the results the oscillation amplitude has to be . 

 
Fig. 4.10. The maximum amplitude of  the force signal obtained by numerical simulations and using 
the analytical  expression (a) and the relative errors between them (b) for different values of , 

constant oscillatory frequency of   (simulation time step . 
 

The influence of simulation time step has also been investigated, the results being 

presented in Figure 4.12 and Figure 4.13. The reduction of the time step with an order of 

magnitude brings a noticeable reduction of the relative error, enlarging the validity domain of 

the theoretical formulation:  for .  

Even tough there is still a difference between the results, numerical values being for all 

performed simulations superior to the analytical predictions, this difference may be due to the 

inertia influence. 

a)  b)  
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 The analytical expression excludes inertial contributions being derived from Reynolds 

Approximation, whereas the numerical code solves the Navier-Stokes Equations which 

includes the inertial influence. The computational time step has a noticeable influence on the 

results proving the need of a wise choose of the simulation settings when performing 

numerical simulations of real flows, especially if the modeled motions are complex flows, like 

in this case. 

 
Fig. 4.11. The maximum amplitude of  the force signal obtained by numerical simulations and using 

the analytical expression (a) and the relative errors between them (b) for different values of  , a 
constant oscillatory frequency of   and . 

 

 
Fig. 4.12. Computational time step influence on the relative error between numerical simulation 

results and analytical predictions for different values of oscillatory frequency , constant oscillatory 
amplitude  and two different gaps:  (a) şi  (b). 

 

a) b) 

a)  b)  
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Fig. 4.13. Computational time step influence on the relative error between numerical 

simulation results and analytical predictions for different values of oscillatory amplitude , 
constant oscillatory frequency   and . 

The difference between numerical and analytical results may be due to the inertial 

contribution, this aspect being discussed inParagraph 4.3.4 where a comparison with 

experimental results is performed. We conclude that, for low viscous Newtonian liquids, the 

analytical expression for the squeezing force gives errors less than 2%, for  and 

amplitudes  if the normal gap is limited at   . 

 

4.3.2. The oscillatory squeezing flow of generalized Newtonian fluids 

 

For the generalized Newtonian fluid, the reference sample is a polymer solution (PAA) 

(polyacrylamide solution with water). Its rheology was tested in dynamic shear (Physica 

MCR 301 rheometer, the cone-plate geometry, 50 mm diameter), the results being presented 

in Figure 4.14.  

 
Fig. 4.14.  PAA rheology in shear tests: complex viscosity and shear stress variation (a); storage and 

loss modulus variation (b).  
 

a) b) 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 
Chapter 4. Numerical Modelling of Squeeze Flow Phenomenon 

 

  93  
  

The results disclose a shear-thinning viscoelastic behavior; sample’s viscosity function  

being well approximated by the Carreau-Yasuda model (ec. 2.16), see Table 4.1. The sample 

has also been tested experimentally in oscillatory squeezing flow (for further details see 

Paragraph 5.3).  

Table 4.1. Carreau-Yasuda parameters used to approximate  
the rheological behavior of the PAA sample. 

     
0.01 2.5 2.3 1.1 0.35 

 

For the PAA solution it has been obtained a phase angle between the input signal 

(displacement, ) and the output signal (force) which is characteristic to a viscoelastic 

fluid response ( ), as showed in Figure 4.15.b, unlike for the Newtonian fluid 

(the mineral oil, ) for whom the phase angle is  (see. Figure 4.15.a).  

 
Fig. 4.15.  Experimental force and displacement signals for mineral oil sample (a) and PAA sample (b) 

in oscillatory squeezing flow motion at , , . 
 

a) b) 
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Fig. 4.16. Radial velocity vectors distribution trough the gap and along plate radius for the Newtonian 

mineral oil sample (a) and a polymer sample described by Carreau-Yasuda model (b). 
 
The numerical simulation of the oscillatory squeeze flow of the PAA sample discloses a 

deformation of the output signal (force signal) according to the shear-thinning behavior of the 

sample, but the phase angle obtained from numerical simulations is  indicating the 

absence of the elastic component.  

Actually both numerical code and approximation model cannot disclose the viscoelastic 

behavior, for its investigation being needed the use of a mechanical model of viscoelastic 

behavior such as Maxwell or Kelvin-Voigt models (see Paragraph 2.2).   

 

r  = 1 
mm 

r  = 4 
mm 

r  = 3 
mm 

r  = 2 
mm 

b) 

a) 
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Fig. 4.17.  Force and displacement signals obtained trough numerical simulation of the oscillatory 
squeezing flow for a polymer sample described by the Carreau-Yasuda model at , 

 and . 
 
The investigations of viscoelastic rheological behavior trough squeezing motion is one 

of the most delicate problems when considering squeezing flow, a commercial numerical code 

which includes viscoelasticity that can solve squeezing motions being unavailable at the 

present time (for details see Paragraph 3.2.5.2).  

However the pseudoplastic behavior of the sample is emphasized during numerical 

simulations by the fluid flattened radial velocity distribution in the gap (see Figure 4.17).  

 

4.3.3. Nonlinear behavior of viscoelastic samples in oscillatory squeezing flow 

 

The nonlinear rheological behavior of complex fluids (in particular Yield Stress fluids) 

is emphasized at medium and large amplitude oscillatory shear flows in the so called LAOS 

procedure (see Paragraph 2.4).  

A correlation of various testing procedures, simple shear or extensional flow and 

complex squeeze motions, is imperative for a proper rheological characterization of complex 

fluids (since their processing and use implies complex flows in complex geometries) [54], 

[114], [196].  

In shear, yield stress fluids behavior is modeled analytically with different constitutive 

equations [38], [141], [142], [155]. The viscosity and flow curve being well aproximated by 

the Carreau-Yasuda model if the flow index has a negative value (Figure 4.18).   

 
Fig. 4.18. Viscosity dependence on shear rate (a) and the flow curve, usual curve for positive flow 

index and with the occurrence of a plateau for negative flow index (b) for different parameters of the 
rheological Carreau-Yasuda model which can approximate the behavior of polymer solutions  

and emulsions (see Table 4.2) 
 

a) b) 
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The non-linearity is remarkable for , but only the negative values generates flow 

curve non-monotonic character (Figure 4.18), which can model yields stress fluids. Therefore, 

using different parameters for the Carreau-Yasuda model with both positive ( ) and 

negative ( ) flow indexes the nonlinear behavior can be simulated numerically . 

Figure 4.18 presents the viscosity dependence on shear rate (shear-thinning behavior) 

and the flow curve (usual curve for positive flow index and with the occurrence of a plateau 

for negative flow index) for different parameters of the rheological model, which normally 

can approximate the behavior of polymer solutions or emulsions, such as a cosmetic cream 

(see also Table 4.2). Since the numerical code Fluent does not include the Carreau-Yasuda 

model as a viscosity function in its library, the model was written into a text file and imported 

as a User Define Function UDF. 

 
Table 4.2. Carreau-Yasuda parameters used to approximate the linear and nonlinear rheological 

behavior of emulsions and polymer solutions in shear flow. 
Fluid type Notation      
Emulsion Cream1 0.5 2e6 1e2 1e3 1 
Emulsion Cream2 -0.5 2e6 1e2 1e3 1 

Polymer solution PAA1 0.4 2 0.01 0.8 4 
Polymer solution PAA2 -0.4 2 0.01 0.8 4 
Polymer solution PAA3 0.4 0.5 0.01 0.15 5 
Polymer solution PAA4 -0.4 0.5 0.01 0.15 5 

 

Simulation results are presented in Figure 4.19 for PAA1 and PAA2 parameters and in 

Figure 4.20 for the emulsion parameters Cream1, Cream2). The output force signal deforms 

from a sine shape with increasing oscillatory amplitude even for the linear behavior of the 

polymer. For a nonlinear behavior the force signal deformation is significant, tending to a 

square-like shape at large . For both linear and nonlinear behavior the computed phase 

angle is  , since, as mentioned before the elastic component is being neglected, the 

deformation of the signal being exclusively dependent on the shear-thinning behavior of the 

sample and the presence of nonlinearity induced by the negative flow index.  
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Fig. 4.19.  Quasi-steady linear  (a1,b1,c1) and nonlinear  (a2,b2,c2) behavior of a polymer 

solution described by the generalized Newtonian Carreau-Yasuda model (PAA1, PAA2, see Table 
4.2). The results are obtained from numerical simulations of oscillatory squeezing flow characterized 

by  ,  şi   (a),   (b),  (c).  
 
For both material models (which represents a polymer solution and an emulsion), the 

distortion of force signal is dependent on the oscillatory amplitude, as expected on the basis of 

shear nonlinear theory (LAOS procedures), [81], [114], [129], [233]. 

a1) a2) 

b1) b2) 

c1) c2) 
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Fig. 4.20.  Quasi-steady linear  (a1,b1) and nonlinear  (a2,b2) behavior of an emulsion 
described trough generalized Newtonian Carreau-Yasuda model (Cream1, Cream2, see Table 4.2). 
The results are obtained from numerical simulations of oscillatory squeezing flow characterized by  

,   and   (a) respectively  (b).  
 

One concludes that numerical simulatons of generalyzed Newtonian models in 

oscillatory squeezing gives a qualitative representation of the strain amplitude influence on 

the disorted output signal. The results are found to be consistent with the classical ones 

obtained in oscillatory shear (see also Chapter 6). 

 

4.3.4. End effects obtained numerically for oscillatory squeeze flow 

 
For single phase numerical simulations it has been noticed a dependency of the relative 

error (between numerical results and analytical predictions) on the initial film thickness (see. 

Figure 4.10). Considering that the squeezing force is computed as a integral of the pressure 

field on plate radius (lower wall length), the computed pressure distribution has been analyzed 

in comparison with the analytical predicted pressure field. It is observed that differences 

between the numerical simulation and the theory are significant especially at high gaps 

 (Figure 4.21.a). This difference decreases once decreasing  at  

b1) b2) 

a2) a1) 
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(Figure 4.21.b), and that for the smallest film thickness  the results are identical 

(Figure 4.21. c). 

 
Fig. 4.21. Pressure distribution on upper and lower walls obtained numerically, in comparison with the 
analytical formulation at:  (a),  (b),  (c). Results for oscillatory 

squeezing flow of mineral oil at   and  . 
 

 
Fig. 4.22.  Iso-pressure lines in the gap (in the vicinity of the outlet zone) obtained trough the 

numerical simulation of the oscillatory squeezing flow of mineral oil at  , , 
and different initial film thickness:  (a),  (b),  (c). 

 

c) b) a) 

a) b) 

c) 
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The pressure spectrum in the gap discloses the deformation of the isopressure lines as 

increasing the initial film thickness. This gap dependent geometry may be due to some 

computational errors during the numerical simulation of the complex squeezing flow but 

equally it can due to end effects which may appear near the exit of the flow domain.  

Pressure isolines distribution (Figure 4.22) emphasis a possible influence of the end 

effects for gaps , trough their deformation from a linear shape in the center of the 

geometry and a gradually deformed shape as approaching the outlet zone (where the boundary 

imposed condition is the atmospheric pressure ).  

A more detailed analysis of the end-effects influence is presented in the following 

paragraphs where surface tension, contact angle and wall adhesion are taken into 

consideration. 

 

4.3.5. Free surface evolution in oscillatory squeeze flow simulations 
 

End effects influence on the normal force distribution has been performed trough the 

tracking of free surface evolution, using the Volume of Fluid Multiphase Model available in 

the numerical code (see Paragraph 4.1 for description). From all available interface tracking 

techniques the GR scheme is known to be the most appropriate when the numerical 

simulation results must follow the real experimental shape of an interface (Paragraph 4.1). 

Trough this method it can be successfully modeled any flow characterized by a main flow 

direction (flow motions like Poiseuille or Couette), obtaining trough simulation an almost 

identical shape of the interface as the real experimental ones [18], [38], [159], [178].   

In the case of oscillatory squeeze flow, the unsteady motion has been modeled 

numerically by using the Pressure-based solver, using two different computational models to 

determine local gradients (Green-Gauss Cell Based and Green-Gauss Node-Based models) 

shifting from one procedure to an other to achieve the convergence of the numerical calculus. 

For Case A where gravity influence is not taken into account (Figure 4.23) the simulation may 

be performed using GR capturing scheme and the Green-Gauss Cell Based model to compute 

local gradients. When including gravitational effects in the simulation the GR scheme is not 

sufficient to achieve computation convergence, leading to unrealistic deformed shapes of the 

interface and to high values of local velocity gradients, especially in the vicinity of outlet zone 

(or interface). The GR scheme is limited trough the CN value and the internal time steps of 

computation used to solve volume fraction equation. The use of CICSAM scheme and 

switching to Green-Gauss Node Based model for the computation of local gradients allows 

the convergence of the simulation in the presence of gravitational effects. 
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 Fig. 4.23. Oil-air interface evolution (for a complete oscillation) obtained for the numerical simulation 
of oscillatory squeezing flow ( , , ,.) in the absence of gravity 
by using GR scheme (a) and in the presence of gravitational effects by using CICSAM scheme (b). 

 
Figure 4.23 presents the evolution of the free surface (fluid – gas interface) for a whole 

time period ( ) obtained from the numerical simulation of the oscillatory squeezing 

flow of the mineral oil for a initial film thickness of . Gravitational effects are 

investigated without including contact angle or surface tension proprieties (Figure 4.23. b). 

In comparison with the analytical prediction, the numerical force signal amplitude 

decreases when two fluid phases are involved (see Figure 4.24). Gravity seems also to reduce 

force amplitude, bringing it under the values obtained analytically or numerically in the 

absence of gravitational effects. Interface tracking is made by starting the simulation with a 

linear free surface (connecting the upper and lower walls, see. Figure 4.6) at the end of the 

gap and obtaining after one plate oscillation a deformed shape of the interface. Meniscus 

formation (Figure 4.23) give rise to a change between fluid phases in the vicinity of the outlet 

zone, a small part of the volume occupied initially by the mineral oil becomes occupied by the 

air surrounding the gap accordingly to the continuity equation used by the numerical code. 

t simulation = 0.02 s 

 

Case B 

t simulation = 0.04 s 

 

t simulation = 0.06 s 

 

t simulation = 0.08 s 

 

t simulation = 0.1 s 

 

Case A 
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Fig. 4.24. Force signal obtained trough numerical simulations of single and multiphase squeeze flow. 
Numerical results are compared with the analytical  predictions and the experimental measurements 

for the following conditions: , , . 
 
This may lead to a decrease of the force signal amplitude since the air surrounding the 

gap (see Paragraph 4.2.2) has a much smaller viscosity than the investigated fluid, thus less 

thrust. In order to perform a relevant comparison between the numerical results and 

experimental measurements in OSF it is necessary to include in computations the physical 

parameters defining the real flow such as fluid surface tension, the contact angle and 

eventually to initialize the flow into a geometry in which the free surface shape is not linear 

but it approximates the real free surface observed experimentally. 

For the present study surface tension has been included into computations but the 

convergence of the computation has not been archived. Different simulations have been 

performed in order to obtain computation convergence: the use of high resolution schemes as 

CICSAM with implicit and explicit formulations, a refined mesh with a unitary aspect ratio, 

the reduction of time step from   to .  

Despite all measures taken the convergence of the computation has not been obtained; 

very large values of velocity are obtained for both fluid phases in the vicinity of the interface, 

as well as in the surounding air phase, especially near to the pressure outlet areas.  

Velocity increases abruptly form zero to almost 100 mm/s at the first displacement of 

the interface and the propagation of surface tension gradients and dynamic contact angle from 

the walls towards the center of the gap. Truncation errors increase form one iteration to 

another leading to unrealistic values of velocity vectors and the deformation of the free 
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surface (see Figure 4.25). A solution might be a further reduction of the computational time 

step until values of  , in this case, the necessary time to obtain a single 

oscillation of the plate is too long considering the available hardware resources. 

 
Fig. 4.25. Oil-air interface and velocity vector distributions obtained for oscillatory squeezing flow in 

the presence of surface tension and liquid-solid contact angle ( , ,
). Case F1: Solver GGCB, GR scheme for interface tracking; Cae F2: Solver GGNB, GR 

scheme for interface tracking; Case F3: Solver GGNB, CICSAM scheme for interface tracking. 
 

Hence, the continuation of investigations in this direction is found inefficient for this 

thesis. However a correlation can be made between the shapes of the interface obtained 

through numerical simulations (Figure 4.23) and the deformed pressure isolines obtained in 

single phase numerical simulations (Figure 4.22). Thus the shape of the free surface may be 

emphasized trough single phase simulations, at least qualitatively.  

As conclusion, the modeling of the free surface for oscillatory squeezing flow in the 

presence of superficial tension or contact angle could not be archived. In the absence of end 

effects, numerical solutions indicate good representation of the squeezing phenomenon and a 

fair correlation between the computed values and the experimental measurements. Moreover, 

at small film thickness the numerical solution corresponds qualitatively and quantitatively 

with the analytical solution, thus the influence of possible end effects or inertial therm can be 

neglected. 

 

t = 0.002 s 
Vmax = 1.94 m/s 

t = 0.0029 s 
Vmax = 7.77m/s 

t = 0.006 s 
Vmax =  1. 14 m/s 

Case F1 Case  F2 Case  F3 
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4.4. NUMERICAL MODELING OF CONSTANT VELOCITY SQUEEZE FLOW 

 
For constant velocity squeeze flow the simulations were performed (as mentioned 

before) using two methods: (i) a transient unsteady solution (with deformable mesh) and (ii) a 

quasi-steady approximation (fixed mesh, different gaps). Unlike for oscillatory squeezing 

flow, the force is computed on the upper wall of the geometry accordantly to the performed 

experimental investigations (see Chapter 5). For single phase simulations the investigations 

were performed for three different squeezing velocities ( ) using the 

rheological parameters of the mineral oil investigated in the previous paragraph (

). In the case of the quasi-steady approximation, force 

distribution has been obtained by performing a simulation for each pair of ( ). During 

experimental investigations the evolution of the free surface has been found to vary depending 

on the squeezing velocity, therefore, the free surface evolution and its influence on the 

squeezing force has been analyzed numerically. 

 

4.4.1. Qualitative and quantitative analysis between transient and quasi-steady 

approximations 

 
Squeeze force variation obtained using both solutions are presented in Figure 4.26 for 

three squeezing velocities. The geometries used to perform the simulations are presented in 

Paragraph 4.2 (Figure 4.4 and Figure 4.5).  

 
Fig. 4.26.  Normal force dependence on film thickness and squeeze velocity obtained numerically 

using transient and quasi-steady approximations of the constant velocity squeeze motion 
 of mineral oil. 
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Normal force variation indicates a very good correlation between the transient and 

quasi-steady approximations, except the high film thickness domain, where, in the case of 

transient unsteady approximation the flow is not fully developed and the residuals have not 

yet reached the convergence limit. To analyze the development of the flow in the gap the 

radial and axial velocity components are extracted at different radii for the case where the 

squeezing velocity is , all results being compared with the analytical 

predictions. 

 
Fig. 4.27.  Radial velocity distribution in the gap, for the mineral oil sample, at a constant squeezing 

velocity of   and . Comparison between analytical solution and the 
numerical simulations using a quasi-steady approximation (case a) and  

a transient approximation (case b). 
 

 
.Fig. 4.28.  Axial velocity distribution in the gap, for the mineral oil sample, at a constant squeezing 

velocity of   and . Comparison between analytical solution and the 
numerical simulations using a quasi-steady approximation (case a) and 

 a transient approximation (case b). 
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The coherence of the results is found also for the radial and axial velocity distributions 

in the gap (at different radii) and for the pressure distribution on the upper wall, the results 

being identical for both approximations used (see Figures 4.27-4.28). Moreover the numerical 

simulation results fit perfectly the analytical distributions. Radial velocity varies along plate 

radius, increasing gradually once approaching the exit of the gap (see Figure 4.27). Axial 

velocity distribution is constant along the plate radius because the fluid is moving with 

constant velocity on the axial direction (Figure 4.28), accordingly to the theoretical hypothesis 

that the radial flow is dominating the squeezing motion. The results indicate a good 

correlation between both numerical approximations used and the analytical model as showed 

in Figures 4.26 – 4.29. 

 
Fig. 4.29.  Pressure distribution on the upper wall for the mineral oil sample at a constant squeezing 

velocity of   and . Comparison between analytical solution and the 
numerical simulations using a quasi-steady approximation (case a) and  

a transient approximation (case b). 
 

Making a comparison between the necessary time to simulate the motion by using the 

two methods and considering the good correlation between the results, both form qualitative 

and quantitative point of view, we consider that the quasi-steady approximation may be 

successfully used to model the constant velocity squeeze flow. Moreover the quasi-steady 

approximation requires a much smaller computational time being more efficient than the 

transient approximation, for whom there are needed between two and seven days of 

computations depending on the squeezing velocity, the initial gap and the hardware resources. 

However, the quasi-steady method requires a different geometry for each film thickness, 

thus its use is recommended only for simple geometries.These results prove that for the 

simple squeeze flow inertia hasn't got a significant influence, and thus the inertial therm may 

be neglected for the studied film thickness and squeeze velocities domains.In conclusion in 

the absence of end effects the numerical simulations of the analyzed transient squeezing gives 

identical results with the quasi-steady classical analitical solution. 

a) b) 
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4.4.2. End effects in single phase constant velocity squeeze flow 

 
The investigation of free surface influence through numerical simulations is motivated 

by the evolution of the free surface observed experimentally for different Newtonian and non-

Newtonian fluids. Firstly, Figure 4.30 presents a schematic representation of different shapes 

of the free surface observed experimentally or found in literature (red curve) and the linear 

shape of the free surface as it is considered by the analytical model and most of numerical 

solutions (blue line).  

 
Fig. 4.30.  Different shapes of the free surface in squeeze motion, observed experimentally (red curve) 

and as considered by most of the numerical solutions and analytical model. 
 

For single phase simulations free surface influence is neglected, being included only for 

multiphase simulations (by using VOF model) where surface tension, contact angle, 

adherence properties and gravity may be considered. Unlike for the oscillatory squeeze flow, 

for the simple squeeze flow, both pressure distribution and pressure isolines do not indicate 

the presence of end effects when using the transient approximation (see. Figures 4.31 – 4.33). 

A very good correlation is found between the upper and lower wall pressure distributions and 

the pressure isolines are not deformed. For constant velocity squeeze flow the influence of 

free surface shape has been investigated also by using the quasi-steady approximation and 

geometries with different shapes of the pressure outlet zone (Annex 5). 

 
 Fig. 4.31. Pressure distribution on upper and lower walls (a) and pressure isolines in the gap (b) for 

the transient numerical solution of constant velocity squeeze flow, mineral oil sample 
at  , . 

a) b) 
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Fig. 4.32.  Pressure distribution on upper and lower walls (a) and pressure isolines in the gap (b) for 

the transient numerical solution of constant velocity squeeze flow, mineral oil sample 
at  , . 

 
Fig. 4.33.  Pressure distribution on upper and lower walls (a) and pressure isolines in the gap (b) for 

the transient numerical solution of constant velocity squeeze flow, mineral oil sample 
at  , . 

 
The end effects influence cannot be analyzed using a single fluid phase in this case, 

neither a quasi-steady approximation (Annex 5), for this investigations being necessary a 

multiphase simulation of the motion. The computed force values and pressure distribution on 

the uper plate are not affected by the slopes of the imposed free surfaces. 

 

4.4.3. Multiphase modeling of simple squeeze flow 

 
Starting with a geometry with imposed boundary conditions which corresponds exactly 

with the real experimental model (Figure 4.34.a), in which the surrounding area of the gap has 

two pressure outlet zones (boundary condition p0) the flow give rise to an abnormal flow 

direction of the air phase between the two outlet zones, even at very small squeezing 

velocities ( ). In the absence of gravitational effect or surface tension, the 

increase of velocity magnitude of the phases (reaching 3.91 m/s) and the unrealistic  

a) b) 

a) b) 
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deformation of the interface, requires the change of the initial imposed boundary conditions. 

The simulation was repeated using a geometry with a surrounding domain (air phase volume) 

that has only a single outlet area, increasing also the squeezing velocity to minimize the 

capillary effects and to induce a principal direction of the flow. Also in this case the 

limitations of the GR scheme leads to very large values of the Courant Number (CN) and the 

convergence is not obtained (Figure 4.34.b1).  

 

 
Fig. 4.34. Oil-air interface and velocity vectors obtained numerically for the constant velocity squeeze 
flow using VOF2 geometry with different boundary conditions: two pressure outlet zones - red line (a) 

and a single outlet zone (b, c). The simulation settings imply the use of Pressure-Based solver with 
GGNC model and GR (a, b) and CICSAM (c) interface tracking methods. The simulation is performed 

without taking into account gravity, surface tension or contact angle. 
 
However by using the CICSAM scheme for interface tracking the convergence is 

obtained (this scheme suports larger values of the CN), the shape of the free surface and 

velocity vectors for both of fluid phases beeing presented in Figure 4.34.b2. Thus, for all 

numerical simulations presented in this paragraph the high resolution sheme (CICSAM) has 

been used, with the Pressure-Based solver and the GGNB method for computing the local 

gradients.  

t = 0.25 s 
Vmax = 0.021 m/s 
CN = 2.82 
 

t = 0.25 s 
Vmax = 0.2 m/s 
CN = 5.2 

b) c) a) 

t = 0.25 s 
Vmax = 3.91 m/s 
CN = 9.21 

p0 

p0 p0 p0 

wall 

wall wall 
wall 

wall wall 

wall 
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In Figure 4.35 the influence of different contact angle values on the evolution of the 

interface is presented, for the simple squeeze flow, at different simulation times 

corresponding to a reduction of the film thickness. The results are obtained in the absence of 

the gravitational effects and surface tension (case 1) and in the presence of gravity and surface 

tension (cases 2 - 4), with different imposed contact-angle values on the boundaries.  

For the simulations that include the presence of the fluid surface tension                           

( ), the dynamic contact angle imposed for each solid wall are presented in 

Table 4.3. The variation of imposed contact angle aims the investigation of the free surface 

evolution during the squeeze flow and the advance of the fluid interface on the solid 

boundaries, considering the important applications of a possible control of the wetting 

properties (the no-slip or adherence condition is considered). 

 
Table 4.3. Imposed values for the dynamic contact angle at solid-fluid interface ( ), used for the 

multiphase numerical simulation of constant velocity squeeze flow. 
Case C2 C3 C4 

Boundary Description    
Lower wall 30 30 30 
Upper Wall 30 30 30 
Lower external wall 90 30 30 
Margin 90 90 30 
External Wall 90 90 90 

 
A first comparison between cases C1 and C2 evidenced that, in the absence of gravity  

and surface tension the fluid accumulates at the edge of the testing gap. Under gravitational 

effects the interface starts to wet the lower wall, its advance being limited by the imposed 

boundary condition on the lower wall.  

Meanwhile the surface tension leads to a rise of the squeezed fluid on the margin 

(corresponding to the real plate edge), the fluid actually wets this surface due to capillary 

action and plate displacement. By imposing a lower contact angle on the lower external wall 

(case C3) we notice a faster onward motion of the interface towards the exit of the flow 

domain without a decrease of the film ascension on the margin.  

The shape of the free surface and its development in time completely changes when the 

contact angle is also reduced to  (case C4). The shape obtained trough the C4 simulation 

can be correlated with the one observed during experimental investigations (Paragraph 5.4.3). 

For D1-D3 simulations the parameters used for the C4 case were kept, but the slip 

condition on the lower wall and lower external wall has been changed in order to investigate 

the influence of slip phenomena on the force distribution and on free surface’s evolution. 
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Fig. 4.35.  The development of oil-air interface obtained trough numerical simulation of constant velocity squeeze flow ( )  without  

gravitational effects and surface tension (case 1) and in their presence, using different values of the imposed contact angles (case 2,3,4). 

t  =  0.04 s , h  = 0.6 mm t  =  0.06 s , h = 0.4 mm t  =  0.08 s , h = 0.2 mm t  =  0.09 s , h = 0.1 mm 

Case  C1 

Case  C2 

Case C3 

Case C4 
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Thus for case D1 the no-slip condition is imposed, for case D2 the a slip condition is 

imposed for the external lower wall by imposing a very small value of the wall shear stress 

( ), inducing a partial slip condition for the entire domain, and for case D3 

the slip condition is extended on the whole lower surface (lower wall and external lower wall) 

inducing almost a perfect slip condition of the fluid at the wall. 

 
Fig. 4.36.  Development of oil-air interface obtained trough numerical simulation of constant velocity 

squeeze flow ( ) for different wetting conditions imposed on the lower walls, 
(corresponding to case D1, D2 and D3 – see Figure 4.37-4.38). 

 
By tracking the development of the interface and the onward motion of the fluid on the 

lower wall, respectively fluid ascension on the margin it can be noticed that the presence of 

the slip condition leads to a significant change of the interface shape and a quicker advance of 

the fluid towards the exit of the flow domain. Equally the maximum height reached by the 

fluid rising on the margin is reduced once the partial-slip or perfect slip conditions are 

imposed (see. Figures 4.36 - 4.38).  

The shape of the interface obtained trough numerical simulations (especially for the 

partial slip condition) corresponds to the one observed during experimental investigations 

(Figures 4.37-4.38). The differences may due to the dimensions of the external lower wall 

used in the numerical simulation (which is shorter than for the experimental geometry, see 

Paragraph 4.2) but also to the limitation of fluid surface tension .   

The analytical expression of the maximum height of a liquid column rising on a wall 

(see Paragraph 2.5.1) assumes that the lifting velocity id due exclusively to the surface tension 

force that act on the interface. 
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Fig. 4.37. The development of oil-air interface obtained trough numerical simulation of constant velocity squeeze flow ( ), in the presence of gravity and 

surface tension, using different slip conditions: no slip condition on all walls (case D1); partial slip, only on the external lower wall (case D2); almost perfect slip on the 
entire lower surface (case D3). Comparison with the experimental visualizations for  .

Case D1 Case D2 Case D3 Experimental Interface 

h = 0.892 mm h = 0.892 mm h = 0.892 mm h = 0.892 mm 

h = 0.306 mm 

h = 0.644 mm h = 0.644 mm h = 0.644 mm 

h = 0.424 mm h = 0.424 mm h = 0.424 mm 

h = 0.306 mm h = 0.306 mm h = 0.306 mm 

h = 0.644 mm 

h = 0.424 mm 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 

Chapter 4. Numerical Modelling of Squeeze Flow Phenomenon 
 

  114  
  

 
Fig. 4.38. The development of oil-air interface obtained trough numerical simulation of constant velocity squeeze flow ( ), in the presence of gravity and 

surface tension, using different slip conditions: no slip condition on all walls (case D1); partial slip, only on the external lower wall (case D2); almost perfect slip on the 
entire lower surface (case D3). Comparison with the experimental visualizations for  . 

h = 0.210 mm 

h = 0.01 mm 

h = 0.210 mm h = 0.210 mm h = 0.209 mm 

h = 0.172 mm h = 0. 172 mm h = 0.172 mm h = 0.172 mm 

h = 0.114 mm h = 0.114 mm h = 0.114 mm h = 0.115 mm 

h = 0.01 mm h = 0.01 mm h = 0.01 mm 
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Fig. 4.39.  The variation of the upper plate displacement ∆h wall and the advance of the fluid column on 

the margin ∆h fluid   with fluid film thickness. Comparison between experimental measurements and 
numerical simulation results for the constant velocity squeeze flow ( ), using different 

wetting conditions (see case  D1, D2 and D3). 
 
In comparison with the analytical formulation of the free surface that wets the margin, 

the simulations are always indicating superior values of the maximum height of the liquid 

column, regardless the wetting property of the lower walls (see Figure 4.39 – 4.40). This fact 

may due to the descending displacement of the upper wall that induces a supplementary rising 

velocity of the fluid, during the squeeze motion.  

 
Fig. 4.40.  The development of oil-air interface obtained trough numerical simulation of constant 
velocity squeeze flow ( ) in comparison with the analytical predictions. Results are 

obtained in the presence of gravity and surface tension, using different adherence conditions: perfect 
adherence (a); almost no adherence  (b).  

 
Moreover the radial and axial velocity distributions (Figure 4.41, respectively 4.42) in 

the gap are influenced by the presence of the perfect slip condition. Normal force variation 

with fluid thickness is presented in Figure 4.43. 

a) b) 
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Fig. 4.41.  Radial velocity distribution in the gap, for the mineral oil sample, at a constant squeezing 
velocity of   and . Comparison between numerical simulations: single 

phase quasi-steady approximation (case a); transient multiphase approximation with no slip condition 
(case b), transient multiphase approximation with perfect slip condition (case c). 

 
Fig. 4.42.  Axial velocity distribution in the gap, for the mineral oil sample, at a constant squeezing 
velocity of   and . Comparison between numerical simulations: single 

phase quasi-steady approximation (case a); transient multiphase approximation with no slip condition 
(case b), transient multiphase approximation with perfect slip condition (case c). 

 
It can be observed that the presence of both gravity and surface tension during 

multiphase numerical simulations leads to a decrease of the force values in comparison with 

the single phase simulation of the phenomenon.  

The computed values however are in concordance with the ones measured during 

experimental investigations. By imposing a no slip condition on the entire lower surface 

defining the geometry leads to a significant decrease of the normal force values, framing the 

experimental measurements somewhere between no slip and almost perfect slip conditions. 

This may disclose the occurrence of a partial slip of the oil at the plate during 

experimental investigations. It must be also considered that the numerical simulations were 
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performed with a imposed surface tension smaller than the real one ( ; 

) due to the numerical code limitations. The difference between theoretical 

results (analytical formulation and numerical simulations) and the experimental measurements 

can due also to a limitation of the force transducer. 

 
Fig. 4.43. Normal force distribution for constant velocity squeeze flow ( ) of mineral oil 
sample. Comparison between numerical simulations results in both single and multi phase modes and 

the experimental measurements performed at different testing temperatures. 
 

However, normal force distribution, fluid column height on plate margin, the onward 

motion of the interface on the lower plate and even the velocities distributions are being 

influenced by the initial shape of the free surface.  Therefore, in order to obtain a better 

correlation between numerical simulations and experimental measurements of visualizations it 

is necessary to initialize the simulation with a geometry for which the free surface shape must 

correspond to the one observed experimentally. 

 

4.5. COMPARISON BETWEEN NUMERICAL SOLUTIONS: GENERALIZED 

REYNOLDS EQUATION AND NAVIER-STOKES EQUATIONS FOR OSCILLATORY 

SQUEEZE FLOW 

 
The most common analytical formulation of squeezing phenomenon (pressure 

distribution, squeeze force, velocity distributions) derives form the Reynolds Approximation 

for Lubrication, as shown in Paragraph 3.2. However the commercial CFD code Fluent solves 

Navier-Stokes Equations in order to determine squeeze flow parameters.  

In Paragraph 4.3.1 a comparison has been made between numerical simulation results 

and analytical prediction, comparison that disclose a significant influence of the inertial term, 

that is included by the Navier-Stokes Equations but neglected by the analytical formulation. In 

this paragraph a second numerical code is used to compute squeeze flow parameters 

DETAIL 
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(especially squeezing force), by using a Generalized Reynolds Equation to solve the 

oscillatory squeeze flow for both Newtonian and Generalized-Newtonian fluids.  

The finite elements numerical code is written in Fortran 95, v. 5.7 software and the 

simulations are preformed by using a dedicated computational platform named Winteracter 

7.10, which allows the compilation, linking and simulation of the code. 

 The Generalized-Reynolds Equation used is [28]: 

 

         ( 4.10) 
with fluid velocity given by 

 

         ( 4.11) 
 
where  and  

The determination of this equation form Navier-Stokes System is detailed in Annex 6. 

The flow domain is meshed using finite elements (and shape functions) and the 

“meshed”equations use a first order finite elements discretization.  

 
Fig. 4.44. Winteracter console and the affichage of input data for numerical simulations with 

the personalized code created in Fortran. 
 
Multiple simulations have been performed for both Newtonian and Generalized-

Newtonian fluids, the results being compared with the analytical formulations and numerical 

simulations results obtained with Fluent code in previous paragraphs 

.The initialization parameters are stored in a data file, that is read (and modified if 

necessary) at the beginning of each simulation (see Figure 4.44). The data file contains 

various information such as: (i) geometry definition (initial film thickness,plate radius); (ii) 

displacement profile (frequency, amplitude,  number of oscillating periods); (iii) 

computational parameters (maximum number of iterations, number of time steps); (iv) fluid 

properties (Newtonian viscosity or Carreau-Yasuda parameters).  
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The computational algorithm is the folowing: 
Run (start the program) 
Reading simulation parameters: the data file 
Computation initialization 
 Start time step 
  For every time step  
   If  “ Newtonian”  then call “Newtonian module” 
    Solve Reynolds for Newtonian viscosity given 
   End if 
  For “non-Newtonian” do 
   Solve Reynolds for eta 0 given 
   Compute complete integrals I1, I2, J1, J2 on film thickness 
   Compute viscosity 
   End do 
  Solve Reynolds with the new viscosity        
  Compute: pressure distribution, squeezing force                   
  Write results files: pressure, computed force, film thickness variation 
 End time step 
 Repeat for the imposed number of time steps 
End  
 

4.5.1. Results obtained for Newtonian fluids 

 
The simulations were performed by using the rheological properties of mineral oil 

sample ( ) at different input parameters (film thicknesses, oscillatory 

frequencies and oscillatory amplitudes).  

Fig. 4.45. Comparison between numerical simulations results obtained with FORTRAN code and 
analytical predictions. Oscillatory squeeze flow of mineral oil sample, ,  

and:  (a);  (b);  (b). 

c) 

a) b) 
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Fig. 4.46. Comparison between numerical simulations results obtained with FORTRAN code (red 
dots), analytical predictions (black line) and numerical simulations obtained with FLUENT code for a 
larger (green dots) and a smaller time step (blue dots). Oscillatory squeeze flow of mineral oil sample, 

, , and  (a);   (b). 

 
 

Fig. 4.47. Comparison between numerical simulations results obtained with FORTRAN code (red 
dots), analytical predictions (black line) and numerical simulations obtained with FLUENT code for a 
larger (green dots) and a smaller time step (blue dots). Oscillatory squeeze flow of mineral oil sample, 

,  and:  (a);  (b).  
 
A first comparison between numerical results and analytical predictions disclose a 

very good agrement, regardless the input parameters (as shown in Figure 4.45). the computed 

phase angle coresponds to a pure viscous behavior. By comparison with the numerical 

simulations presented in Paragraph 4.3.1 (simulations performed with Fluent code), the results 

obtained with Fortran code are smaller. Actually, being almost identicall with the analytical 

predictions, the relative erors presented in Figures 4.9 – 4.13 between Fluent simulations 

results and analytical model, can be considered, as the same, between Fluent simulation 

results and Fortran simulation results. 

 
4.5.2. Results obtained for Carreau-Yasuda model 

 
When using the Generalised Reynolds Equation to predict the behavior of a Carreau-

Yasuda fluid, (see Table 4.2, PAA3 parameters), in oscillatoty squeeze flow (Figure 4.48), 

a) b) 

a) b) 
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PAA3 parameters), the results are indicating a phase angle characteristic to pure viscous 

fluids (as predicted by Fluent). 

 
Fig. 4.48. Results obtained with Fortran Code, for a Carreau-Yasuda fluid  in oscillatory squeezing 

flow (  and different ). The parametes (PAA3) are indicated in Table 4.2. 

 
Fig. 4.49. Results obtained with Fortran Code, for a Carreau-Yasuda fluid in oscillatory squeezing 
flow ( ). The parametes (PAA3 and PAA 4) are indicated in Table 4.2. 

Comparison between a positive and negative flow index of the constitutive model, at   
(a) and force signals obtained for a negative flow index and different oscilltory amplitudes. 

 
However the deformation of the signal can be observed, due to the pseudoplastic 

character of the model. Also, the deformation of the signal increases with oscillatory 

amplitude (similar to the results obtained with Fluent code). In comparison with the numerical 

b) a) 

a) b) 

c) 
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results obtained with Fluent code, Fortran code predicts much larger values of the normal 

squeezing force. The differences between the foce signal deformations obtained using the two 

numerical codes, may be due to inertial effects that are only taken into account by the Navier-

Stokes equations (used by Fluent code).   

The non-monotonous behavior, given by the Carreau-Yasuda model with a negative 

flow index (Figure 4.49), is not emphasized when using Fortan code. The force signal is less 

deformed for a negative flow index and force amplitude is smaller (when keeping the same 

parameters of the constitutive model and changing only the flow index, see Table 4.2, PAA4 

parameters). 

 

4.6. CONCLUSIONS 

 
Numerical investigations of squeeze flow have been performed using commercial code 

Fluent using rheological parameters of some fluids which have been also investigated 

experimentally in order to obtain a correlation of the results. In the case of oscillatory 

squeezing flow the correlation between numerical simulation results with the analytical 

predictions lead to the determination of a limited validity domain for the analytical expression 

of squeeze force, depending on film thickness, the oscillatory frequency and the oscillatory 

amplitude of the imposed displacement profile.  

The differences between the two theoretical solutions may due to the dynamics of the 

complex squeeze motion, especially the inertial therm, taken into account by the Navier-

Stokes system of equations solved by Fluent but neglected when determining the analytical 

formulation (from Reynolds Lubrication Approximation). Furthermore, the influence of 

computational time step imposed by the user was investigated. For smaller time steps used in 

simulation, the values of the computed force decreased, approaching the theoretical 

predictions but being always superior two them. 

The differences between the Navier-Stokes formulation for squeezing phenomena and 

the Reynolds Approximation for Lubrication are emphasized in Paragraph 4.5.1, where a 

second code is used for the computation of normal force in oscillatory squeeze flow. The 

results obtained with the code using a Generalized-Reynolds Equation are almost identical 

with the analytical predictions therefore all the affirmations made above are valid also in this 

case. 

In the case of constant velocity squeeze flow there were used two numerical methods to 

solve the unsteady motion: a transient deformable-mesh solution and a quasi-steady 

approximation of the flow. A very good correlation was found between the two 
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approximations from both qualitative (velocity distributions on radial and axial directions) 

and quantitative (force values, pressure distribution) point of view. Cause of the good 

agreement with the analytical predictions and the reduced necessary time of computation, the 

quasi-steady approximation is recommended for numerical investigations of such complex 

flow in simple geometries. 

End effects were investigated trough multiphase flows by using Volume of Fluids 

module of the numerical code. In oscillatory squeezing flow the computations disclose that by 

considering the influence of gravity and the presence of a fluid-air interface, force values are 

being reduced in comparison with single phase simulations.  

By comparing the single phase and multiphase simulations it has been showed that the 

free surface shape or the end effects influence on the pressure fields can be emphasized trough 

the deformation of pressure isolines obtained in single phase simulations which correspond to 

the shape of the interface obtained in multiphase VOF simulations for the same testing 

conditions. For the multiphase constant velocity simulations the influence of contact angle 

and adherence conditions were investigated.  

The contact angle plays a significant role on interface dynamics, controlling the onward 

motion of the interface on the lower wall and also the rising height of the fluid column on the 

geometry margin. By changing adherence conditions from no-slip to an almost perfect slip 

condition the numerical modeling of the interface can be correlated to the observed 

experimental free surface.  

Normal force distribution, free surface development and also fluid velocity distribution 

in the gap are influenced by the wetting conditions. The experimental measurements were 

proved to be framed between numerical results obtained in perfect slip and no slip conditions, 

therefore a partial-slip at the plate during experimental testing may be considered.  

The limitations of the numerical code impose the finding of different methods which 

can allow the convergence of numerical computations for modeling conditions closer to the 

real experimental ones.  

Therefore this study may continue by initializing the computations in a geometry that 

free surface corresponds to the free surface observed experimentally, by using larger values of 

the superficial tension and different architecture of the solid walls by imposing multiple 

wetting conditions. 
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CChhaapptteerr    55.. EXPERIMENTAL INVESTIGATIONS OF SQUEEZE FLOW 
 

 

5.1. EXPERIMENTAL SETUPS AND TESTING PROCEDURES 

 
5.1.1. Devices and procedures for oscillatory squeezing flow 

 

Experimental investigations were performed with a controlled frequency rheometer- 

MFR 2100 (Micro Fourier Rheometer), prototype designed by GBC Scientific Australia. The 

rheometer’s mechanism is based on impressing a multi-frequency signal by upper plate 

motion in the normal direction. The device is usually capable to give amplitudes up to 25 μm, 

in a frequency range , as long as the force magnitude, located at the lower 

plate,  is kept in a range of force sensor measuring domain ±44 N  [75], [76], [77], [78], [97], 

[98]. The sample is placed between the two plates, which are assumed to be parallel. The 

oscillatory motion imposed by the upper plare induces the squeezing of the sample, the 

corresponding normal force being measured at the lower plate (see. Figure 5.1) 

 
Fig. 5.1. Micro Fourier Rheometer- MFR 2100 (a) and the parallel plate  

geometry used (25 mm dimeter) (b). 
 

5.1.1.1. Mechanism and components 
 

The rheometer has an axially symmetric design that has been chosen to increase its 

rigidity and eliminate or reduce flexing of the system that could lead to errors in the measured 

viscoelatic properties of the fluid. All body parts are constructed from stainless steel (see 
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Figure 5.1). The rheometer mechanism consists of a vertical column (3), mounted on a rigid 

heavy cast steel base (1), supported all by four leveling feats (2). For an easy adjustment of 

the base the instrument has a spirit level (17) incorporated on the base upper face (Figure 5.2). 

A precision motorized slide is provided on both the base and column slides. Geared stepper 

motors drive both the vertical slide (6) and the horizontal slide (14). The vertical slide 

mechanism, contained in the vertical column case has also a hand wheel (18) connected to the 

motor allowing the vertical slide to be moved with a step of   manually, or 

otherwise be controlled automatically through the rheometer’s own software. 

 
Fig. 5.2. MFR 2100 rheometer – schematic representation.  

 
On the horizontal slide is mounted the lower plate (9) with the load cell (10) beneath it, 

the parallelism adjustment being possible due to the carriage (6) that has an incorporated 

universal joint, which allows the inclination of the plate in four direction, by using two little 

turning wheels (15). Once the plate is considered to be well adjusted, its position is fixed 

through three fixing screws (16). The vertical column contains the rheometer head 

mechanism, mounted on the upper plate (7), which can be raised or lowered so that the 

sample (8) can be placed between the two testing plates and the testing gap set precisely.  

A load is generated by a magneto restrictive transducer known as the Terfenol-D driver 

(4) and its displacement is monitored using an optical sensor (11). The top end of the Terfenol 

transducer is set to a fixed position by way of a set screw (5). When it is driven its bottom end 

vibrates and transmits its motion to the leaf spring suspended top plate assembly. The top 

plate assembly comprises a bush on which a small mirror is mounted. The fiber optic 

displacement sensor detects the motion of the mirror which is identical to the rheometer upper 

plate displacement. 
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 The load is measured by the load cell (or strain gauge) located under the lower 

measuring plate. The lower plate is mounted on a stage that can be slid across the base to 

permit observation and imaging using a microscope. The load cell supplied with the 

instrument is a piezoelectric type (PCB 208B01) with an integrated FET impedance 

transducer to extend its low frequency response. The electronic unit provides for both 

piezoelectric and strain gauge load cells. Since the sockets carry excitation voltages reference 

should be made to the technical information before using a load cell other than the one 

supplied. The load cell supplied is rated for a maximum load of +/-10 lb (+/-44.5 N) and may 

be selected for AC or DC coupling. The load cell is attached to the parallelism device. 

 Measurements precision is directly dependent on the parallelism between the two 

plates. The parallelism is adjusted by performing small angular adjustments to the bottom 

plate. The bottom plate is mounted on a movable ball, which is part of the parallelism 

adjustment assembly. The ball is normally immobilized by way of a plate secured to the base 

by three parallelism lock screws. Loosening the front lock screw allows the operator to 

change the angular position of the ball using the two thumb wheels located on the front of the 

parallelism assembly. Note that no adjustment is possible while the three lock screws are 

tight. Loosening one screw frees the adjustments. The aim of the adjustment is to set the gap 

between the plates precisely using the ruby spacer provided with the instrument at four 

predetermined locations on the rheometer bottom plate [22], [96], [97], [98], [200]. Despite 

the control loop systems, the rheometer functioning was not satisfactory during the work at 

this thesis, the measurements being limited both for the range of test frequency and in the 

range of signal amplitude. 

 
5.1.1.2. The experimental setup 

 

The MFR D/A-A/D Control  is connected to the MFR computer on which its own 

software is installed and the instrument motions are controlled (both Terfenol Actuator and 

vertical/horizontal slides). A laptop is connected to MFR D/A-A/D Control through a National 

Instruments Data Acquisition Board, allowing the storage of measured values in simple text 

files. All measured values are filtered through the MFR D/A-A/D Control from both 

displacement and force sensor (see. Figure 5.3).  

Data acquisition was performed using National Instrument’s software Lab View 8.5 and 

then processed by using Origin Pro 8.0 software, which allows users to analyze, compute and 

represent the omeasured data. Both force (output) and displacement signals (input) were 

captured trough the acquisition setup. 
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Fig. 5.3.  Experimental scheme of the setup used for oscillatory squeezing flow. 

 

5.1.2. Instrumentation and procedures for constant velocity squeezing flow 

 

5.1.2.1. Experimental instrumentation 

 
The simple squeeze motion (constant velocity squeeze flow) has been investigated 

experimentally using Physica Anton Paar MCR 301 rheometer with various parallel-plate 

testing geometries. The experimental setup has been adjusted in order to allow flow 

visualizations during performed investigations (see Figure 5.4).  

Rheometers control is accomplished through Rheoplus 32 dedicated software, version 

3.41, installed the on MCR computer. The reometers design allows the investigation of fluids 

rheology in various shearing tests (simple strain or stress controlled shear tests, oscillatory 

shear tests, waveform analysis, temperature sweep tests et al.) but also in constant velocity 

squeeze flow, performed by imposing a constant descending velocity (vertical motion) of the 

upper plate. 

The reometers exclusive features include also: (i) the TruGap™ system used for 

measuring the gap; (ii) a TruRate™ adaptive controller of the sample in rotation and step 

strain; (iii) the TruStrain™ system used for the accurate control of the imposed deformation 

or strain due to improved real-time position control oscillation (formerly DSO); (iv) 

Toolmaster™ system for the automatic recognition of measuring system and accessories; (v) 

QuickConnect coupling that assures a very easy (one-hand) connection of the measuring 

geometry on the vertical slide; (vi) variate measuring systems for all kinds of applications 

(parallel plate of glass or metal, cone-plate, Couette cylinders, double cone for interfacial 

measurements, et al.); (vii) the T-Ready™ system that reduces waiting times by detecting and 
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signaling sample temperature equilibration [252][253]. The technical specifications of the 

rheometer are presented in Table 5.1. 

 
Fig. 5.4. Physica MCR 301Rheometer: experimental setup (a) and the parallel plate 

 glass geometry (43 mm diameter) (b). 
 

Table 5.1. Technical specifications of Physica MCR 301 Rheometer [252][253]. 
Technical Data  Unit  Physica MCR 301  
Min. torque rotation  μNm  0.05  
Min. torque oscillation  μNm  0.01  
Max. torque  mNm  200  
Torque resolution  nNm  0.1  
Angular deflection (set value)  μrad  0.1 to ∞  
Angular resolution  μrad  0.01  
Min. angular frequency  rad/s  10-5  
Max. angular frequency  rad/s  628  
Normal force range  N  0.01-50  
Normal force resolution  N  0.002  
Max. temperature range  °C  -150 to +1000  

 
The measuring precision of the normal force sensor is very good 0.002 N, yet the force 

transducer is limited at a maximum force of 50 N. The experimental setup (Figure 5.4) 

includes a visualization system composed of a light source with fiber optic light-guiding wires 

and a Lumenera CCD digital camera, with a frame rate of up to 15 fps. For the experimental 

investigations of constant velocity squeeze flow there were use various parallel plate 

geometries (plate-plate glass geometry with 43 mm diameter; plate-plate steel geometry with 

25 mm diameter; plate-plate steel geometry with 50 mm diameter) each being adapted at the 

consistency of the analyzed material: (i) at low viscosity values the use of large diameter 
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plates is recommend to obtain an increase of the force measuring range at high gaps where the 

low values of normal force are difficult to record; (ii) for highly viscous fluids smaller 

diameter plates are use in order to limit the actual contact area on which the force is measured 

in order to capture the force variation on a larger domain of the film heights (at low heights 

the force strongly increases ant it’s value is limited by the force transducer at 50 N) . 

Temperature control is archived for the lower fixed plate through the peltier system (based on 

rhe recirculation of cooling/heating liquid through a special chamber mounted under the lower 

plate) on a temperature domain of  -150 to +1000 °C (see Figure 5.4 - 5.5 and Table 5.1) 

 
Fig. 5.5. Schematic representation of the Peltier system used temperature control. 

 
The upper plate temperature is not controlled, remaining in contact with the surrounding 

environment (air temperature). Therefore, even tough film thickness is relatively small 

( ) the presence of a temperature gradient in the gap may be considered to 

influence the normal force measurements (implicitly the viscosity measurements in shear 

testing).  However temperature influence is not studied in this thesis but is considered as a 

possible influence on the performed squeeze measurements. The testing temperature for all 

performed experimental investigations of the simple squeeze motion is considered to be equal 

to one imposed for the lower plate. 

 
5.1.2.2. Testing procedure for constant velocity squeeze flow 

 
The fluid is being placed on the lower plate (whom temperature is controlled) and the 

upper plate is descended until reaching the initial film thickness from which the squeeze test 

starts. For low viscous fluids, such as mineral oils, glycerin, low concentrated polymer 

solution et al., the initial film thickness is smaller ( ) than the one for high viscous 

fluids, like honey, cosmetic cream, polysiloxane, gel and other soft solids ( m). 

Before reaching , the upper plate stops its descent to allow the user to trim the excess 

sample in order to avoid the occurrence of possible end effects. When starting the test the 

plate descends with the imposed velocity, during a imposed time period correlated with film 

thickness. During the constant velocity squeeze test the fluid occupying the gap is deformed 

Imposed lower  plate  temperature   

Upper plate temperature 
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and forced outside the decreasing space between the solid plates. The fluid resistance is 

materialized in the squeezing force acting normally to the plates recorded through the force 

transducer mounted at the end of upper plate rod on the vertical column. 

In this setup both measurements of input (velocity, displacemet) and output (force) are 

performed on the upper plate. Several experiments were performed in order to establish a 

correlation between the dynamics of the system, force sensor sensitivity and the influence of 

plates parallelism. The working domain for squeeze tests was established in the range of 

measured force  and gaps .  

 

5.2. PURE VISCOUS FLUIDS RHEOLOGY IN OSCILLATORY SQUEEZING TESTS 
 

The rheological characterization was performed for multiple Newtonian fluids with 

different viscosity coefficients. Initially the tests were performed for a Newtonian mineral oil 

(  at 20 degrees), in order to establish a valid testing domain where the 

experimental and theoretical results can be correlated.  

This correlation assumes the initial determination of fluids shear viscosity, necessary to 

approximate analytically the squeezing force (see eq. 3.10 – 3.13). Therefore the fluids were 

characterized firstly through shear tests by using Physica MCR 301 rheometer presented in 

Paragraph 4.3. The input signal for the displacement of the upper plate was chosen to be a 

sine wave, as it is easy to compute and is the most stable input signal types of the rheometer. 

Experiments were carried out at different frequencies (  ≤ 50 Hz), amplitudes (  ≤ 1 μm) and 

different nominal gaps, at a temperature of . A first result discloses a  phase angle 

between the input (displacement) and output signal (force), characteristic to dynamic response 

of a pure viscous fluid (Figure 5.6). 

 
Fig. 5.6. Experimental force and displacement signals obtained in oscillatory squeezing flow of 

mineral oil sample at  , , . 

δ  = 90o 
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Due to technical limits and environmental influences, the signals captured with the data 

acquisition board are slightly noisy, especially in the case of the force signal. However, the 

disturbances are quite small compared to the base signal, so after a low pass filter (Fourier) 

was applied, the measured signal became a uniform wave (Figure 5.7). 

 
Fig. 5.7. Filtered force signal obtained in oscillatory squeezing flow of mineral oil sample 

 at  ,. 
 
Comparing the theoretical and experimental values, we observe a phase difference ( ) 

between the two signals and an offset which is due to improper data acquisition with Lab 

View. Looking at the input displacement signal , we find the same phase difference 

between experimental measurements and theoretical sine prediction, see Figure 5.8.  

This phenomenon indicates that the rheometer, cannot maintain a constant input signal 

frequency in time, or it has an odd calibration of the optical displacement sensor. This 

problem can be solved only trough the re-calibration of the displacement sensor and the plate 

displacement mechanism, facts that weren't totally achieved during this study. 

 
Fig. 5.8. Comparison between experimental and theoretical force (a) and displacement (b) signals 

obtained in oscillatory squeezing flow of mineral oil sample 
 at  , , . 

 

a) b) 
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The solution adopted was to include registered phase shift in the analytical expression 

of displacement and to determine a correction value ( ) for the experimental sine signal, 

which depends on the input parameters (amplitude, frequency), for the present case the value 

being  (see Figure 5.8). 

 
Fig. 5.9. Displacement signal fitting (a), by using 5000 (b) or 10.000 points (b) for the interpolation. 

The results correspond to an oscillatory squeezing test of mineral oil sample at , 
 and . 

 
The correction procedure used to determine  shows the importance of choosing an 

appropriate number of points to approximate the shape of a signal. If the number of points is 

not large enough result may be wrong or irrelevant. In a first approximation we used 5000 

points of approximation, a number that has proven to be insufficient to outline a sinusoidal 

profile (see Figure 5.9.a). The duplication of approximation points leads to a correct fitting of 

the signal (Figure 5.9.c).  

In Figure 5.10 are presented the experimental results for the force signal of the mineral 

oil obtained at two values of  in comparison with the values predicted by the theoretical 

model. It can be seen that the experimental values are always higher than the theoretical ones, 

the difference between them increasing at low film thicknesses. This effect is probably caused 

by the lack of parallelism between the plates, which affects the experimental results especially 

for small film thickness and low viscosities [72], [77], [78]. Considering the inherent inertia 

of the measuring system, it is possible that the calibration factor of the force transducer to 

modify with the force magnitude.  Frequency influence on the measured values is emphasized 

in Figure 5.11, for an initial film thickness of  The experimental results 

indicate a linear dependence on the oscillatory force amplitude of the displacement signal. 

The differences between experimental measurements and theoretical predictions increase with 

both oscillatory frequency and oscillatory amplitude (Figure 5.11).  This fact may be 

correlated to the dynamics of the squeezing motion: at high frequencies the inertia becomes 

a) 

b) 

c) 
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important; therefore it is normal for the force measured values to be superior comparing to the 

analytical computed ones (for wich the acceleration is not considered).  

 
Fig. 5.10. Comparison between theoretical and experimental force signals for mineral oil sample in 
oscillatory squeezing flow: different initial film thickness,  (a, b, c) and  

(d, e, f); different values of oscillatory displacement amplitude,  (a, d),  (b, 
e),  (c, f) and . 

 
This assumption is sustained by the results obtained experimentally for the glycerin 

sample ( ,  and ),  where by applying a correction factor a 

good agreement was found between theory an experimental measurements. 

a) 

b) 

c) 

d) 

e) 

f) 
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Fig. 5.11.  Experimental and corresponding theoretical force magnitude (a) and force amplitude 

difference (b), as function of  and  at . Values extracted from the signals for mineral 
oil sample investigations in oscillatory squeezing flow tests. 

 
The tests were repeated for a glycerin solution ( ) at a initial film thickness 

of . By applying a unique correction factor on the measured values (eq. 5.1) we 

improve the correlation between of the measured force signal and the theoretical prediction  

(see Figure 5.12). 

 
       ( 5.1) 

Force amplitude values and the apparent viscosity computed from this values by using 

(ec. 3.16) are presented in Table 5.2. The results are indicating a good agreement with the 

shear predicted viscosity of the sample, keeping the relative error between the shear viscosity 

and the one obtained in squeeze flow in an acceptable range.  

All the measurements indicate a phase angle of  between the displacement and the 

force signals, accordingly to the Newtonian rheological behavior of the samples. At small 

values of displacement oscillatory amplitude is observed an underestimation of the viscosity 

coefficient. 
 

Table 5.2. Corrected force amplitude, apparent viscosity and relative error of measured viscosity (in 
comparison with shear viscosity) for the glycerin sample in oscillatory squeezing flow. 

    
0.3 0.07134 0.88821 1.31025 

0.45 0.10301 0.85501 4.99924 
0.6 0.15264 0.95021 5.57894 

0.75 0.18881 0.9403 4.47778 
0.9 0.23001 0.95457 6.06312 
1 0.25976 0.97023 7.8034 
2 0.5043 0.94181 4.64517 

 
However the relative errors are small enough to consider a good correlation between the 

results obtained trough the oscillatory squeeze test and the ones predicted in shear flow tests. 

 

a) b) 
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Fig. 5.12. Comparison between theoretical and experimental force signals (measured and corrected) 

for glycerin sample in oscillatory squeezing flow at ; ,and different values of 
oscillatory displacement amplitude:  (a),  (b),  (c), 

 (d),   (e),  (f). 
 

 
.The phenomena presented in this paragraph disclose some technical issues 

(dysfunctions) of the MFR 2100 rheometer: 

a) 

b) 

c) 

d) 

e) 

f) 
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(i) The limited control of the displacement signal which cannot be kept constant for a 

sufficiently long observation time; 

(ii) The nonlinear response of the force transducer, and, consequently the difficulty of its 

calibration;  

(iii) The lack of an appropriate parallelism between the plates. 

These issues could not be completely eliminated mainly due to lack of appropriate 

technical assistance (service) from the manufacturer. The negative impact of these problems is 

seen especially in small film thicknesses , high inertia of the measuring system and low 

viscous samples ( ). These issues do not affect the measurements from the 

qualitative point of view: the linear dependence of measured force on the oscillatory 

frequency (for  ) and the   phase angle measured for pure viscous fluids.  

For samples with high viscosity ( ) the measurements performed for initial 

film thickness  are not affected by the mentioned issues, the correlation between 

measurements and theoretical predictions being adequate from both qualitative and 

quantitative points of view (see Paragraph 4.3). 

 

5.3. THE RHEOLOGY OF COMPLEX FLUIDS IN OSCILLATORY SQUEEZING FLOW 
 

The present section presents the rheological characterization of two complex fluids in 

oscillatory squeezing flow: a polymer solution – PAA (Polyacrilamyde in water, used also in 

Paragraph 4.3.3) and a low consistency impression material (ISO 4823), based on 

condensation-curing addition silicon or polydimethilsiloxane - PS (polimerized silicone – 

polysiloxane). The chemical structure of PS consists of alternating silicon and oxygen 

atoms connected through sigma bonds, having side chains attached to the silicon atoms, as 

presented in Figure 5.13 [255]. The complete analysis of the shear rheology of this material is 

presented in Chapter 6. PAA is a viscoelastic liquid with a shear thinning behavior and the 

polysiloxane is a complex fluid with yield stress. 

 
Fig. 5.13. Chemical structure of polysiloxane (PDMS). 

 
The investigations covered a frequency domain of , with oscillatory 

displacement amplitude of  and initial film thickness , all 

measurements being performed at  .  

n 
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Fig. 5.14. Time dependent displacement and force signals obtained in oscillatory squeezing flow of 
PAA sample at ,  and different oscillatory amplitudes:   (a),  

 (b),  (c) and   (d). 
 

For the PAA sample the results (displacement and force signals) obtained in oscillatory 

squeezing flow are presented in Figure 5.14 and for the polysiloxane in Figure 5.15. In both 

cases the phase angle between force and displacement signal is smaller than  indicating a 

viscoelastic behavior of the samples.  

For the PAA solution the deformation of force signal depends on the oscillatory 

amplitude of the input (at constant frequency) as found also in the numerical simulations. For 

the polysiloxane sample at  the phase angle is almost equal to   indicating a 

weakly elastic behavior, thus a strong viscous behavior. At higher frequencies 

 the results are indicating a more pronounced elastic behavior but the signal 

deformation is not observed.  

The Lissajous figures corresponding to the performed measurements (shown above) are 

presented in Figure 5.16 - 5.18. Lissajous curves disclose the parametric dependency between 

the measured force and imposed deformation, usually the dependence between the applied 

deformation and the material response, and are often used for the characterization of both 

linear and nonlinear behavior of complex fluids in shear flows (see. Paragraph 2.4).  

a) 

b) 

c) 

d) 
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Fig. 5.15.  Time dependent displacement and force signals obtained in oscillatory squeezing flow of 
PS sample at  ,  and diferent oscillatory frequancies:  (a), 

 (b) and  (c). 
 

For the mineral oil and the glycerin samples measurements (presented in the previous 

paragraph) the Lissajous curves are indicating, as expected a pure viscous rheological 

behavior (see Figure 5.16). The deviations from a perfectly circular form are due exclusively 

to the limitations errors of the force transducer and displacement sensor.  

 
Fig. 5.16. Lissajous figures obtained in oscillatory squeezing flow for the mineral oil (a) and  

glycerin sample (b) at ,  and different oscillatory amplitudes. 
    

 

b) a) 

a) b) 

c) 
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Fig. 5.17. Lissajous figures obtained in oscillatory squeezing flow for the PS sample. The curves 

correspond to ,  and different oscillatory frequencies,  (a), 
 (b),  (c),  (d),  (e) and to ,   

at different oscillatory frequencies  (f). 
 
In the case of PS sample the deformation of Lissajous curve is increasing with 

oscillatory amplitude .  

The flattening and elongation of the curve at high frequencies indicates an increase of 

elasticity component and therefore disclose a viscoelastic behavior of the material (Figure 

5.17).  

a) 

b) 

c) f) 

e) 

d) 
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The curves are rotating counter-clockwise (irregardless the dependency on  or ) 

indicating in this case a swelling behavior with increasing the applied deformation.  

By comparison, the ellipsoidal shape of the Lissajous curves obtained for the PAA 

sample (Figure 5.18) discloses a viscoelastic rheological behavior with a strong elastic 

component at small deformations. The clockwise rotation of the curves reveals a shear 

thinning behavior, accordingly to the sample characterization performed in shear tests (see. 

Paragraph 4.3.3).  

 
Fig. 5.18. Lissajous figures obtained in oscillatory squeezing flow for the PAA sample 

at ,  and different oscillatory amplitudes. 
 

One has to notice that the presented analysis is based on the nonlinear viscoelasticity 

theory for shear motions (see Paragraph 2.4 and Chapter 6), because the scientific literature 

offers poor resources regarding nonlinear rheology analyze in squeezing flows [122], [187]. 

 

5.4. THE RHEOLOGICAL BEHAVIOR OF NEWTONIAN FLUIDS IN CONSTANT 

VELOCITY SQUEEZE FLOW 
 

The simple squeeze flow was analyzed for three Newtonian fluids (mineral oil, glycerin, 

honey) with various viscosities  at different squeezing velocities and 

temperatures. The testing parameters and the initial film thickness are presented in Table 5.3 

for each tested sample. 
 

Table 5.3. Testing parameters for different Newtonian samples in constant velocity squeeze flow. 
Tested Sample    

Mineral Oil 1 {0.01; 0,1; 1} {1, 10, 20, 30} 
Glycerin 1 {0.01; 0,1; 1} {10, 20} 
Honney 2 {0.001; 0.01; 0.1} {5, 10, 20, 30} 

 
Measured parameters were than postprocessed with Origin 8.0 software and represented 

graphically in both dimensional and dimensionless ways. 
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5.4.1. Establishing the reliability domain depending on the fluid film thickness 

 
The first tested sample is the mineral oil, a pure viscous fluid with a minimum viscosity 

of 0.07 Pa.s measured at 30o. Figure 5.20 presents the experimental measurements of the 

normal force for a constant velocity squeeze flow of mineral oil sample at  

and  in comparison with the theoretical predictions (numerical and analytical). 

 
Fig. 5.19. Comparison between experimental measurements and theoretical predictions for mineral oil 

sample in constant velocity squeeze flow ( ) at different temperature values. 
Establishing the reliability domain depending on the fluid film thickness. 

 
It can be observed that at a constant squeezing velocity the measured force values 

decrease once increasing temperature and that the lower limit of the reliability domain of fluid 

film thickness increases with temperature (since the measured values decrease and are found 

in the limits of the force transducer).  

 
Fig. 5.20. Comparison between experimental measurements and theoretical predictions for mineral oil 

sample in constant velocity squeeze flow ( ) and  . 
 

Transducer 
lack of sensitivity 
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Fig. 5.21. Comparison between experimental measurements and theoretical predictions for mineral oil 

sample in constant velocity squeeze flow at different temperature values:  (a);  
. 

 
At high film thickness force distribution disclose a spreading due to the lower values of 

the force that cannot be properly captured by the sensor (Figure 5.19). At  , 

see Figure 5.21 the measurements disclose a linear distribution of the squeezing force, 

characteristic to a Newtonian behavior, but the values are smaller than the ones predicted by 

theory (numerical results, analytical predictions). Same phenomena is observed when 

increasing squeezing velocity ( ), see. Figure 5.22. The difference between 

experimental and theoretical values, and also a slightly change from the exponent -3 of the 

theoretical dependence , may be due to different factors like: viscosity variation 

with temperature in the gap, improper parallelism between the plates, inertia influence and 

possible wall depletion phenomena (lack of adherence).  

In our study, a dimensionless force expression is used to represent the measured values 

in order to to build a “master curve” for all data (different samples, temperatures and testing 

geometries). 

 
5.4.2. Dimensionless force formulation 

 
The dimensionless representation uses the following expressions: 

 
( 5.2) 

the force being expressed by  

 

( 5.3) 

a)  b)  
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The measurements for mineral oil are represented in dimensionless form by using 

different values of the viscosity coefficient (see Figure 5.22). Viscosity values were chosen 

form shear test rheology of the sample, being temperature dependent as shown in Paragraph 

4.4.  It is noticed that even a slight change of the viscosity value has an important effect on the 

squeezing force: at smaller values the force approaches the theoretical predictions. 

 
Fig. 5.22. Dimensionless experimental values (using different viscosity coefficients) and theoretical 

predictions for mineral oil sample in constant velocity squeeze flow at and  
. 

 
Fig. 5.23. Dimensionless experimental values and theoretical predictions for mineral oil sample 

in constant velocity squeeze flow at and different temperatures. 
 

At small squeezing velocities the dimensionless measured values are smaller then the 

theoretical ones as emphasized in Figure 5.23. Once increasing velocity the experimental 

results approach the theoretical predictions and are almost identical at large speeds, 

 (Figure 5.24.b).  For the second sample, the glycerin solution, the dimensionless 

results are presented in Figure 5.25. In this case a nonlinear distribution of the normal force is 

found especially at small squeezing velocities ( ), the phenomena being 

probably due to a partial slip at the wall. This deviation is diminished once increasing the 
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squeezing velocity but the experimental values overcomes the theoretical ones especially at 

high film thickness. This may be due to the inertial effects that occur when the velocity 

increases. 

 
Fig. 5.24. Dimensionless experimental values and theoretical predictions for mineral oil sample in 
constant velocity squeeze flow at different temperatures and:  (a),  (b).  

 

 
Fig. 5.25.  Dimensionless experimental values and theoretical predictions for glycerin sample in 

constant velocity squeeze flow at different temperatures and:  (a),  
 (b),   (c). 

a)  
 

b)  
 

c)  
 

a)  
 

b) 
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The glycerin sample is almost ten times more viscous than the mineral oil sample. 

Therefore an accumulation of the squeezed fluid on the lower plate, in the vicinity of the 

outlet zone may cause an additional pressure in the gap, giving rise to an increase of the 

measured force (see also Paragraph 4.3)  

 
Fig. 5.26.  Dimensionless experimental values and theoretical predictions for honney in constant 

velocity squeeze flow at different temperatures and:  (a), 
  (b),  (c). 

 
For the third sample (honey) the results disclose the same behavior: a linear distribution 

is found ony if increasing squeezing velocity and the measured values are superior in 

comparison with the theoretical ones.  

For this sample, the influence of testing temperature (viscosity coefficient) is more 

obvious: at small temperatures (therefore high viscosity) the measured force is always larger 

than the ones predicted by the theoretical formulation (see Figure 5.26). This may due, as 

mentioned before, to the presence of end effects.  

The master curve for all samples is presented in Figure 5.27, and discloses a good 

agreement between the experimental measurements and the theoretical values. The results 

disclose more consistency at higher squeeze velocity (if we are limited at the optimal range 

for the thrust) which is also an indication of  the theoretical expression validity domain.  

a)  
 

b)  
 

c)  
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Fig. 5.27.  Master curve representing the dimensionless experimental and theoretical force distribution 
for all investigated Newtonian samples in constant velocity squeeze flow at different temperatures: 

   (a),  (b). 
 

5.4.3. Free surface influence in constant velocity squeeze flow 

 

In the previous section there were presented some experimental measurements obtained 

for Newtonian fluids in constant velocity squeeze flow. For low viscous fluids fluids (mineral 

oil, IK,  at ) the measured normal force is smaller than the one 

predicted analytically for the whole film thickness domain  and at all testing squeezing 

velocities. When increasing viscosity (glycerin solution, GL,  at ) the 

measurements disclose larger values in comparison with the theoretical predictions at high 

gap values (corresponding to the beginning of the squeezing test). These effects is more 

obvious for honey sample (HO, at ). Since all samples were 

investigated using the same testing procedures and the same rheometer these differences may 

be explained by the different evolution of the free surface for each sample.  

The experimental setup allows the visualization of the free surface during the squeezing 

flow and its correlation with the measured force. Therefore during each test the interface 

evolution was tracked and recorded in video files (avi format) from which there were 

extracted successive images using Movie Maker software, correlated with different 

observation times and the measured force. Figure 5.28 presents free surface evolution for the 

glycerin solution at constant squeeze velocity  at . The images are 

marked with a notation P1 - P8 which corresponds to the points indicated on the measured 

force distribution. The free surface between P1 and P2 disclose a flow resistance of the 

material through the agglomeration of the fluid on the lower plate in the vicinity of the outlet 

area of the testing gap.  

a) b) 
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Fig. 5.28.  Free surface evolution depending on film thickness ( ) for the glycerin solution in constant velocity squeeze flow,  .
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The onward motion of the fluid on the lower plate and the rise of the fluid on the plate’s 

edge are determined by the surface tension of the fluid and the contact angle at the fluid-solid 

interface. The fact that experimental values of force are superior to the theoretical ones might 

be given by the initial resistance of the fluid at the onset of the squeezing, especially at high 

squeeze velocities. Consecutive images, P3 - P8, are following the interface evolution during 

the squeeze motion until the end of the test. The evolution suggests a lower flow resistance; 

the interface has a rapid advance on the lower plate once the flow (particularly on radial 

direction) is developed. 

 

Fig. 5.29.  Free surface evolution during constant velocity squeeze flow ( ) for mineral 
oil (a), glycerin (b) and honey (c). The captured images correspond to the beginning of the test (a1, b1, 

c1);  an intermediate observational time (a2, b2, c2) and the end of the test (a3, b3, c3). 
 

The evolution of the free surface is shown for all Newtonian samples in constant 

velocity squeeze flow, at all speeds in Annex 7. Figure 5.29 presents the shape of fluid-air 

interface for the analyzed samples at the beginning of a test, at a intermediate observation 

time and at the end of the test, for a constant velocity of   . It may be observed 

that the oil samples wets both the lower plate and upper plate margin since the beginning of 

the test (Figure 5.29.a1), behavior that is not disclosed by the other samples. The interface 

keeps its shape during the whole test, advancing on surfaces of both plates. Free surface 

mineral oil (IK) glycerin (GL) honey (MI) 

a1
) 

a2
) 

a3
) 

b1
) 

c1
) 

c2
) 

b2
) 

b3
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c3
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dynamics discloses a reduced flow resistance of the sample, due to a small contact angle (20 - 

30o for mineral oils) and a small surface tension (0.4-0.5 N/m). For the glycerin solution the 

shape of the interface at the beginning of the test resembles the one observed for the mineral 

oil sample. However an intermediate observation time, it  discloses an agglomeration of the 

squeezed material at the end of the testing gap, probably due to the fact that glycerin has a 

larger contact angle than the mineral oil.  

At the end of the test the shape of the free surface approximates again the behavior of 

the mineral oil sample, even though the fluid interface does not reach the border of the lower 

plate. At small squeezing velocities, the glycerin samples behavior resembles completely the 

one observed for the mineral oil (see Annex 7).  For the third sample, the honey, the behavior 

observed for glycerin is more pronounced, the flow resistance increasing accordingly to the 

viscosity and the contact angle (see Annex 7). As a conclusion the normal force variation may 

be influenced by the dynamics of the flow process, exclusively dependent on the squeezing 

velocity but also on the rheological properties of the fluid: viscosity, surface tension and 

contact angle. 

 

5.5. COMPLEX FLUIDS RHEOLOGY IN SIMPLE SQUEEZE FLOW 
 

This section is dedicated to the characterization of three complex fluids through simple 

squeeze flow: a cosmetic cream (CR), a hair gel sample (GEL) and an impression material, 

posysiloxane based (PS). The rheological properties of these samples were also investigated 

in shear motions (see. Chapter 6). The tests were performed at different squeezing velocities, 

the consistency of these materials allowing initial gaps of 2 or 3 mm. 

 
Fig. 5.30.  Comparison between experimental measurements and analytical predictions (Power-Law 

model) of squeezing force for the analyzed samples (IK, PS, CR and GEL) at different squeezing 
velocities   (a),   (b). 

 

a) b) 
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Unlike pure viscous fluids (mineral oil, IK) the distribution of the normal force disclose 

a change in slope due exclusively to the viscoelastic shear thinning component of this 

materials. For the PS sample the variation of normal force values disclose the presence of the 

elastic component through a small change in the slope but the flow is obviously dominated by 

the pure viscous components (see Figure 5.30). The experimental values were fitted using 

Power Law force expression (eq. 3.43) for all the samples. It may be noticed that for the PS 

sample the flow index is smaller then unit (where unit indicates a Newtonian behavior, as for 

IK) [72], [127], [202]. Unlike PS, the results obtained for CR and GEL samples disclose the 

presence of elasticity in materials internal structure and a shear thinning behavior, both trough 

the significant change in slope and the presence of low values of the flow indexes of the 

analytical expression. The parameters used for the approximation of the curves are presented 

in Table 5.4.  The influence of squeezing velocity on the viscoelastic behavior of CR and 

GEL samples is presented in Figure 5.31. In both cases the increase of squeezing velocity 

leads to a progressive increase of the slope and respectively the flow index. 

 

Table 5.4. Parameters used for the approximation of experimental force distribution of analyzed 
samples in constant velocity squeeze flow, by using Power-Law force expression. 

Fluid 
   

0.01 1 
    

IK 40 1 40 1 
PS 95 0.8 150 0.6 
CR 12 0.06 24 0.21 

GEL 14.5 0.06 26 0.21 
 

 
Fig. 5.31.  Comparison between experimental measurements and analytical predictions (Power-Law 

model) of squeezing force for the CR (a) and PS (b) samples at different squeezing velocities. 
 

Both the flow index  and the consistency index  are exclusively dependent on the squeezing 

velocity. The increase of the consistency index suggests that the elastic structure of the 

samples responds stiffer at high velocities (see Table 5.5). 

a) b) 
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Table 5.5. Parameters used for the approximmation of experimental force distribution for CR and 
GEL samples in constant velocity squeeze flow by using Power-Law force expression. 

   
CR GEL 
    

0.01 12 0.06 14.5 0.06 
0.05 15 0.1 18.6 0.16 
0.1 17.5 0.16 20 0.16 
0.5 22 0.21 24 0.21 
1 24 0.21 26 0.21 

 
Flow index increase with velocity (strain rate) it is also o indication that viscosity curve 

(which disclose a shear thinning/pseudoplastic behavior) approach the plateau region (at ). 

It can be also considered the presence of a lubricating film exuded by the samples during the 

squeezing test, which may lead to a partial slip and thus a change in slope of the force 

distribution. Even if the elasticity cannot be quantified exactly in a simple squeeze test, it can 

be showed that at least qualitatively, this motion can be use to obtain some information on the 

complex rheology of the samples.  

 

5.6. CONCLUSIONS 

 

In this chapter were presented experimental investigations of squeezing motions 

performed in oscillatory and constant velocity flows on Newtonian and viscoelastic/complex 

fluids. All tests were performed in controll strain mode, the input being the oscillatory 

displacement and the constant velocity of the upper plate. Squeezing is not a flow with a 

simple kinematics (as the shear is), therefore the corresponding formula for the thrust is valid 

only in thin film approximation, which is not always fullfiled in experiments. The analitic 

formula corresponding to the normal force, for a given motion of the upper plate is the only 

available expression for computing the viscosity which does not explicitly contain the 

expression for the strain rate.   

One main conclusion of this chapter is the following: squeezing is an experimental 

technique able to differentiate the rheological behavior of materials (from pure viscous to 

viscoelastic, from Newtonian to shear thinning/pseudoplastic character) and to emphasis 

qualitatively the corresponding rheology. Still, it is not the proper procedure to determine 

qualitative informations about the material functions. Our investigations also showed that the 

end effects and wall depletion phenomena might have a relevant influence on the results. 

Their control is difficult, and normally rise the the price of the equipment. A solution to use 

squeeze flow as a rheometrical technique is to include the measurements in a CFD procedure, 

i.e. to couple the experiments with direct numerical simulations. We called this procedure 

Computational Rheometry (see Chapter 1 and 8). A flow can used in “applied rheometry” 
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only if it exists a single definition of a material function, which can be easily computed from 

the measurements. Based on formula (3.10) we can define the squeeze viscosity function as: 

 

( 5.4) 
where  is an apparent squeeze strain rate (for ) and   is a 

geometrical parameter. The material squeeze viscosity is respresented in Figure 5. 32, for the 

tested samples. The results for Newtonian fluids are qualitativley consistent with the data 

from shear experiments. The squeeze function for non-Newtonian fluids disclose a shear 

thinning behavior more relevant for cream and gel samples which is also consistent with the 

computed shear flow index. 

 
Fig. 5.32. Squeeze viscosity for: Newtonian fluids (honey - MI, glycerin - GL, oil - IK),(a); PS sample 

(b); cosmetic cream sample CR (c) and gel sample (d).  
 
However the squeeze viscosity (eq. 5.4) is dependent also on the value of squeeze 

velocity. The proposed relation is just an example of a new material function determined in a 

flow with complex kinematics which might be taken into consideration when complex fluids 

must be characterized.  

a) 

b) 

c) 

d) 
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CChhaapptteerr    66.. NONLINEAR BEHAVIOR OF COMPLEX FLUIDS IN 

SHEAR TESTS 
 

 

During the last decade, the analysis of nonlinear viscoelastic material behavior has 

become one of the main research issues in rheology. The understanding and the correction of 

shear testing procedures; correlations between macroscopic response of fluids under different 

applied deformations (viscosity curves, flow curves, dynamic moduli variation) and the 

changes in their microstructure (chemical reactions, particle dynamics); the classification of 

materials based on their nonlinear rheology, all these aspects represent important steps of 

establishing a basis of the nonlinear viscoelasticity theory.  

The present chapter aims the rheological characterization of some complex fluids in the 

nonlinear viscoelastic domain and the correlation between different shear testing procedures 

in order to determine materials parameters that can be used to distinguish the areas of linear 

and nonlinear viscoelasticity. The analyze also aims to establish a connection between the 

non-monotonic behavior of yield stress fluids in the transition zone (MAOS regime, 

dependent on a critical deformation amplitude) in dynamic tests and the critical yield point 

(critical yield stress or critical rate) which is usually determined in simple shear tests. 

In this chapter are characterized the CR and PS samples invesitigated in squeeze flow 

(see Paragraph 5.5). One objective of this study is to correlate both types of experiments and 

to establish qualitative correspondences between the two sets of data. 

   

6.1. MATERIALS AND METHODS 

 

The samples used in the present work are colloidal systems and suspensions: cosmetic 

cream (CR) and impression material (polysiloxane - PS), respectively. Lanolin and glycerin 

have been also tested as reference samples for a typical soft solid rheology (lanolin), 

respectively for a dominant viscous Newtonian behavior (glycerin).  

Cosmetic cream composition of is a mixture of various solvents (water, glycerin, oils), 

emulsifiers, preservatives solutions (Imidazolidinyl Urea, Propylparaben, Methylparaben), 

surfactants (Cetyl Alcohol, Ceteareth-20), and pigments (CI 47005, CI 14700). Surfactant 

components of our sample (especially urea) can form in combination with water and oil 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 

Chapter 6. Nonlinear Behavior of Complex Fluids in Shear Tests 
 

  154  
  

phase’s different molecular assemblies (micelles, liquid crystals)7 and some of its components 

(antistatic ingredients, pigments) are solid particles. Considering the complexity of sample’s 

structural network, the occurrence of non-linearity is expected during experimental 

investigations in both simple shear and dynamic testing modes.  

The impression material sample is a condensation-curing addition silicone with low 

consistency used in dental applications (ISO 4823). Corresponding to standard description the 

sample is a light body material with low consistency and viscosity, containing 

polydimethylsiloxne, organic peroxide and surfactants.  

Lanolin sample is a waxy raw material with a complex micro-structure, predominantly 

composed of long chain waxy esters, considered generally as emulsion, with a similar 

rheological behavior as lubricating greases. 

The measurements were carried out with a commercial Physica Anton Phaar MCR 301 

rheometer using plate-plate (25 mm diameter) and cone-plate (50 mm diameter) geometries at 

a nominal gap of 0.3 mm; the upper tool is rotated and the lower is at rest, the measurements 

of torque and angular rotation angle being performed at the upper tool (see Paragraph 5.1.2.1 

for description). In order to investigate the possibility of slip phenomena during the tests a gap 

of 1 mm was also used for dynamic stress/strain sweep tests.  

All measurements were performed at constant temperature of 20 oC in both controlled 

strain and controlled stress mode. Shear stress sweep tests were used to determine transient 

flow curves for the cream sample.  

Multiple creep, stressing and stress relaxation tests were carried out for the PS sample in 

order to build a steady state flow curve for this material. Elastic and viscous components were 

determined for all analyzed samples through multiple dynamic amplitude sweep tests 

performed at different frequency values. 

 No rough surfaces or special techniques were used to avoid a possible slip of samples 

during the experiments. Each test presented and discussed in this paper was performed at least 

two times, both qualitative and quantitative measured data being almost identical.   

Of course, we also obtained sometimes results which disclose spurious or wall depletion 

effects, but they are not taken into consideration in the present work. Moreover for a better 

understanding of materials behavior and the possible changes that may appear in their 

microstructure they were observed with a microscope in their initial state and after a simple 

shear deformation (  for 300 s). After applying the deformation there weren't 

observed important changes of materials structure (see. Annex 8). 
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6.2. NONLINEAR VISCOELATIC BEHAVIOR IN DYNAMIC SHEAR TESTS 
 

The investigation started with multiple dynamic strain amplitude sweep tests performed 

for all of our samples at different angular frequencies, . The first two 

figures show the materials elastic ( ) and viscous ( ) moduli obtained at  

and  (Figures 6.1.a and b). The glycerin sample discloses a pure Newtonian 

behavior (constant  and no elasticity, i.e. ). The lanolin sample has a solid-like 

behavior ( ) for small strain amplitudes and a liquid-like behavior ( ) after the 

crossing point at very low strain amplitude ( ). However, the high values of both 

moduli is a typical rheological behavior of soft solids (type 1), in comparison with the non-

monotonous distribution of  and  observed in the case of cream (CR) and polysiloxane 

(PS), samples considered complex fluids belonging to soft matter materials thinning (see. 

Paragraph 2.4), [114], [116], [117]. 

 
Fig. 6.1. Dynamic strain sweeps at constant angular frequency,  (a) and  
(b): cosmetic cream (CR), polysiloxane (PS), lanolin (LN) and glycerin (GL). Hollow marks indicate 

the points where  the Lissajous figures were extracted. 
 

An unusual increase of viscous modulus is found for CR sample in the vicinity of the 

crossing point ( ) between solid-like and liquid-like behavior. The relatively 

maximum (called also „peak”) appears at a strain value of   which indicates a non-

monotonous rheological behavior, classified in literature as a weak strain overshoot behavior 

(type 3). 

In the case of PS sample, both  and  disclose a peak. It is easily observed that PS 

sample has a pronounced viscous behavior in comparison with CR sample ( ) for 

almost the whole tested strain amplitudes. At a critical strain of  the elastic 

modulus starts to decrease and the sample behavior changes from a weak elastic behavior (  

a) b) 
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and  have almost same value) to a liquid dominated one. However this transition seems to 

be unstable since for both viscous and elastic components present fluctuations before the 

onset of fluid behavior (where both moduli begin to decrease monotonically). The relative 

peak is present for  at a strain of  and after his occurrence an abrupt decrease is 

found for this component. In the case of  the peak occurs at a strain value of   

and its decrease is smoother on the strain domain. This type of behavior is less met in 

literature being specific to associative polymers; it is classified as a strong strain overshoot 

behavior (type 4) [114], [116], [117]. The numbers shown in Figure 6.1 indicate the points on 

curve selected for a further more complex analyze in terms of Lissajous figures (Figures 

6.6 – 6.8) and raw stress signals (Figure 6.2), in order to obtain a better understanding   and 

characterization of this complex rheological behavior of transition.   

 
Fig. 6.2. Oscillatory shear stress output for CR sample as function of the strain amplitude input 

, corresponding to the points selected in Figure 6.1. 
 

Appling a sinusoidal deformation (input) to a sample, material’s stress response 

(output) is expected to have also sine waveform, at least at small applied deformations. Figure 

6.2 shows the output raw data of the amplitude strain test for CR sample. The stress signal 

wave is starting to deform form its sinusoidal form (linear regime – SAOS) as the strain 

increases and leads the sample in the transition zone (MAOS). At a strain amplitude of only  

, corresponding to the second point (P2) marked in Figure 6.1, the stress signal 

begins to deform from the pure sine waveform (represented by the solid black-line). 

 This indicates the onset of a non-linear regime. As the input strain increases, the 

output signal becomes more deformed changing its shape when passing from small to medium 

and from medium to large amplitudes (LAOS), where it has a tendency to have a rectangular 

form specific to hard gel solutions [114]. It is important to remark that the same phenomena, 
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deformation of the output signal beyond a criticl strain amplitude, was observed also in 

squeezing (see Paragraph 5.3). 

Figure 6.3 presents shear stress sistribution for CR and PS samples. The dynamic 

moduli against strain amplitude for multiple frequencies are presented in Figure 6.4 for both 

samples, in the range of . The delimitation of the three regimes is easily 

observed and independent on frequency value. For CR sample we define a linear regime for 

small amplitude oscillatory shear strain values (SAOS) where ; a medium 

amplitude oscillatory shear (MAOS) for  (where the transition from solid-like 

to liquid-like behavior is made and the instability in material structure is pronounced) and a 

large amplitude oscillatory shear domain (LAOS) for  (see Figure 6.3.a).  

 
Fig. 6.3. Dynamic strain sweeps at various angular frequency values for CR (a) and PS (b) sample. 

The delimitation of the flow regimes as function of the input strain amplitude and shear stress 
variation. 

 
In the case of CR sample frequency dependence is manifested only in MAOS and 

LAOS zones, in SAOS the stress amplitude being a function of only of strain amplitude  

), with almost a linear dependence.  

This behavior is typical for gel-like material structures and the shape of the signal places 

our CR sample somewhere between soft and hard gel behavior. When entering MAOS region 

shear stress amplitude starts to manifest a dependency on the applied frequency 

 (  is increasing with  at constant , see Figure 6.3.a, the dependence becames 

more sensitive approaching the LAOS domain.  

 This behavior is well emphasized by the loss modulus distribution, which discloses in 

MAOS region a remarkable peak at the value of strain amplitude in the range of  

) for all applied frequencies (see Figure 6.4.b). Furthermore, the   values found in the 

SAOS regime and the maximum value reached in MAOS region increases with oscillatory 

a) b) 
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frequency, this dependence being well marked for , where the onset of LAOS regime is 

considered  (see Figure 6.4.c).   

In comparison to CR material, the PS sample responds like a visco-elastic material, with 

shear stress amplitude increasing directly with both strain amplitude and frequency

, see Figure 6.3.b. In the MAOS region, , stress response 

fluctuates, the moduli decreasing and increasing with strain amplitude, passing through a 

relatively peak before to enter the LAOS domain. 

The presence of this instability and the peaks in  and are more relevant at low 

values of angular frequency , the phenomena being diminished once 

increasing angular frequency. Both storage (Figure 6.4.c) and loss moduli (Figure 6.4.d) 

decrease once entering the unstable zone until they reach a critical strain amplitude 

 and start to increase. The peaks (  peaks appearing earlier than for ) are present at 

strain amplitude of , shifted to lower values in this range by increasing 

frequency.  

 
Fig. 6.4.  Dynamic strain sweeps at various angular frequency values for CR (a,b) and PS (c,d) sample. 

The delimitation of the flow regimes as function of the input strain amplitude: storage modulus (a,c)  
 and loss modulus (b,d). 

 

a) c) 

b) d) 
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The Lissajous figures are representations of raw stress response vs. strain (or shear rate) 

for the whole period of oscillation. For visco-elastic materials in the non-linear regime 

(MAOS, LAOS) the shape of Lissajous loop deforms from its original ellipsoidal shape due to 

the deformation of the stress output signal (see Figure 6.2). 

 Therefore, it is expected that the shape and area of Lissajous figures contain value 

information on the change in material rheology with the increasing of the input magnitude. 

Figure 6.5 and Figure 6.5 show the Lissajous loops for CR and respectively PS samples at a 

constant frequency , corresponding to the points indicated in Figure 6.1.  

When strain increases at the end of SAOS domain the visco-elastic behavior of CR 

sample, showed by the ellipsoidal shape of the loop (P1), starts to change. The area of loop 

increases with strain amplitude and its shape deforms, stretches horizontally and flattens 

vertically tending to a square-like shape at high strains (Figure 6.5).   

 
Fig. 6.5.  Lissajous figures, oscillatory stress vs. oscillatory strain, for CR sample corresponding to the 
points indicated in Figure 6.1, . (a); the detail P3 point marks the onset of non-linearity 

(b). 

 
Fig. 6.6. Lissajous figures, oscillatory stress vs. oscillatory strain, for PS sample corresponding to the 

points indicated in Figure 6.1, . (a). And a detail on P4 and P5 points (b). 
 

a) 
b) 

a) 
b) 
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The clockwise rotation of the loops indicates a gradual softening of the material with 

increasing strain amplitude [81], [82], [83]. The elongated distorted shape of the curves 

disclose a weak strain-stiffening behavior and as approaching larger strains (in LAOS region) 

the rectangular shape indicates a shear-thinning behavior and a gel-like structure of our 

sample [82], [114]. 

In the case of PS sample (Figure 6.6), as entering the MAOS region the Lissajous 

figures deform with the similar evolution as for the cream sample. The shape elongates 

horizontally and flattens vertically (P4, P5) but then it rotates counter-clockwise and takes 

almost an oval shape (P6, P7) tending to a circle shape in LAOS region (P8, P9). PS sample 

discloses also a weak strain-stiffening behavior with increasing strain amplitude but unlike 

CR sample, PS has a more pronounced viscous character in MAOS and LAOS zones [82], 

[114].  If we make comparison between Lissajous figures in shear (Figure 6.6) and squeezing 

(Figure 5.18) we observe the same qualitative rheological behavior, so both experiments are 

consistent. 

 
Fig. 6.7.  Normalized Lissajous figures corresponding to the maximum of  for CR and PS  samples 

at    (see Figure 6.1). 
 

The differences between the structure and evolution of the two tested soft matters are 

evidenced in Figure 6.7, where the normalized Lissajous loops are plotted for the peak points 

of viscous modulus  , see Figure 6.1.   

The cream sample tends to a strain stiffening gel behavior, the elongation of the loop 

showing also a weak strain overshoot, given only by the viscous component. In the case of the 

PS sample the loop tends to an oval shape, stretching and widening in the same time because 

of the contribution of both viscous and elastic components. The informations extracted from 

the Lissajous curves corespond to the materials behavior in SAOS region. As it can bee seen 

in Figure 6.8 the two tested samples disclose a different behavior in frequency sweep  
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experiment performed in SAOS. Within the small amplitude domain CR exhibit a gel-like 

behavior with and  almost parallel and the PS sample has a shear-thinning visco-elastic 

behavior, passing form solid-like ( ) to liquid-like ( ) behavior at a frequency 

value almost equal to unit. 

 
Fig. 6.8. Dynamics moduli vs. angular frequency in SAOS regime for CR and PS samples: gel 

structure for CR, respectively transition region for PS. 
 
The area of stress/strain Lissajous figure is proportional with the viscous energy 

dissipated by the system materialului [81], [114], [196], whereas the area of stress/strain rate 

shows the energy stored by the material structure [143].  

 
Fig. 6.9. Area of Lissajous figures vs. strain amplitude for the tested sample, oscillatory stress vs. 

oscillatory strain (a) and oscillatory stress vs. oscillatory shear rate (b) at   
 
Looking at the evolution of Lissajous loops areas, corresponding to the points marked in 

Figure 6.1, a first notice is the monotonic increasing in the case of GL and LN samples, as 

expected since they disclose a simple and predictable rheological behavior (see Figure 6.9). In 

the case of CR sample the area of stress vs. strain loop increases at higher rate once entering 

a) b) 
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MAOS region (corresponding to the peak in ), meaning the viscous energy is dissipated 

probably due to the breakup of the network microstructures that had already stored tension at 

the beginning of the flow, as indicated by the increase of stress vs. rate curve area. 

In the case of PS sample, the area of loops increase higher as reaching the peeks 

observed in both moduli. During the transition zone the dissipated energy seems to be 

increase with a smaller rate than the stored one, indicating a strong strain overshoot in MAOS 

region (accumulating tension in the structure) and a strain thinning at large strains where the 

system dissipates more energy but it stops accumulating (from the decrease of area stress vs. 

rate). As is expected, for both samples the maximum of the rate areas increasing is reached at 

the critical values of the strains already found in the previous experiments. 

 

6.3. NONLINEAR VISCOELASTICITY IN SIMPLE SHEAR FLOWS 
 

This section introduces a new highlighting procedure of the nonlinear viscoelastic 

behavior o complex fluids by using simple shear tests and by correlating the simple shear 

response with the dynamic one (presented in the previous paragraph). In Figure 6.10 are 

shown flow curves of CR sample obtained through multiple stress-controlled tests at imposed 

shear stress that increases (filed points) or decreases (open points) in the range

, with different slopes in time.  

 
Fig. 6.10.  Transient up (filled points) and down (hollow points) flow curves (shear stress vs. shear 

rate) for CR sample (stress controlled experiments at .). 
 

The flow curves exhibits a “plateau” zone for shear rates  and 

, depending of the history of imposed load, respectively deformation. We 

have to notice that limit stress values of this instability/jump zone are found delimiting also 

the MAOS domain at low frequencies,  and   in Figure 6.3.a. At  shear 
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stress distribution tends to form a second (smaller) plateau before entering LAOS region and 

changing its slope from almost Newtonian one, previous to the jump, to a strong shear 

thinning behavior. Hence, the sample discloses a well defined zero shear viscosity.  

The observed jump in shear rate under a constant applied shear stress is associated 

either with intrinsic instability of the constitutive relation [13], [16], [45], or to the slip of the 

sample at one plate. In the first case we can speak about a real yield stress which determines a 

“kink” in the velocity distribution within the gap, keeping valid the adherence conditions at 

the walls [13], [16], [68], [95], [170], [171].   

 
Fig. 6.11.  Critical strain value emphasized for CR sample in shear experiments (see Figure 6.10): 

applied shear stress vs. starin (a) and strain vs. time (b). 
 

This definition of yield stress associates its value with the corresponding shear stress of 

the jump. Although the jump has not a very precise location on the flow curve - , one can 

observe that the critical point of the plateau onset is well defined by a unique strain value  

(see Figure 6.11). As can be observed from see Figure 6.11.b the value of strain associated 

with the jump in rate from the flow curves is well established at , which 

corresponds to the interval where the peak in  is observed (see Figure 6.4.b).  

Multiple creep, stressing and relaxation tests were performed for the PS sample in order 

to determine a the viscosity variation in time (Figure 6.12), the viscosity transient curve 

(Figure 6.13) and to build up a quasi-steady flow curve (Figure 6.14).  

At small imposed shear stresses, , viscosity tends to increase reaching a 

steady state value  and for    it decreases towars a second steasy state value, .  

For  the viscosity strives to reach , but the observational time (4000 s) is 

not enough fot the curve to attend the steady state value hence it remains in the unstable zone 

corresponding to S2 solution (see Figure 6.12). The critical value indicated by viscosity 

distribution in time is an indicator of the instability domain as it will be shown furtheron. 
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Fig. 6.12.  Time dependent viscosity curves obtained through multiple Creep tests for PS sample. 

 

 
Fig. 6.13.  Viscosity dependence on shear rate for PS sample and the interpolation of the measured 

values using Carreau-Yasuda model: comparison between dynamic shear tests (strain controlled) and 
simple shear tests (stress controlled), (a); construction of a transient flow curve from multiple 

 Creep and Stress Relaxation tests (b).  
 
Results coherence is emphasised in Figure 6.13 by the corespondence between simple 

shear and dynamic shear measurements performed in both controll stress and controll strain 

modes. The mesured values can be interpolated using Carreau-Yassuda model. Additionaly 

the result disclose the need of performing multiple type of test in order to get a good 

representation of the viscosity curve, hence a proper aproximation of samples rheology. In 

Figure 6.13.a dynamic measurements indicate a zero shear viscosity of  . 

When corelating the dynamic measurements with the simple shear tests (Figure 6.13.b) we 

can interpolate the results using a higher value of the zero viscosity . 

However, if relaxations domains are taken into consideration, see Figure 6.13.b, a much 

larger zero shear viscosity is observed . Such values are characteristic to 

complex fluids with a pronounced and well defined yield stress. This value is not a real steady 

a) b) 
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state since for the relaxation domain, the upper plate is at rest, so the measurement is 

performed in transition to rest. 

 
Fig. 6.14. Quasi-steady flow curve for PS sample (multiple stress and strain controlled shear tests). 

 
Under different values of the applied shear stress the dynamics of the samples disclose 

around the value   a plateau behavior in the quasi-steady flow curve (Figure 6.14). 

A shear stress domain of   is established, for , 

where the material presents a less predictable behavior, zone which corresponds to the MAOS 

region.  In the instability domain, the shear stress vs. shear rate variation changes direction 

from “towards left” to “towards right”, similar to the variation in time of viscosity distribution 

showed in Figure 6.12.  

 
Fig. 6.15.  Creep curves performed for the PS sample: a) constant shear stress, see Fig. 7; b) shear 

stress sweep. In both experiments is emphasis the same value of critical strain, i.e.  [-]. 
 

Also, like for CR sample, there is critical stain amplitude  that seems to 

mark the onset of the jump in shear rate from simple shear tests (Figure 6.15), which can be 

corellated to the maximum of   distribution presented in Figure 6.4.d. 

a) b) 
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6.4. FOURIER ANALYSIS AND INVESTIGATION OF SLIP OCCURRENCE 
 

One conclusion is that tested soft matter samples (complex fluids with yield stress) 

discloses in a shear flow a critical strain value, , which define the onset of the liquid-like 

behavior. This value is associated to the existence of a plateau in flow curve and the relatively 

maximum of viscous modulus in strain amplitude sweep experiment. The plateau might be 

also related to the jump in strain rate at a constant value of shear stress, . In this case, the 

yield state is given by the pair ( , the strain value being the characteristic measure of 

the critical yield point. Since the plateau in flow curve is directly related to a jump in shear 

rate, it is important to make difference between the existence of the yield state and possible 

slip at the boundary. Some “wall depletion phenomena” might generate in shear flows similar 

experimental findings and the distinguish between them is not trivial in the absence of a 

quality visualization system, at which our laboratory has not access at this moment (as we 

already mentioned, the present experiments are considered related to intrinsic material 

rheology and not with boundary effects).  

The rheometry performed in the non-linear domain (MAOS and LAOS regimes), 

corroborated with sets of strain and stress controlled shear experiments, might be a solution to 

find a proper answer to this intrigue “rheological question”: is the deformation process of soft 

matter samples characterized by a yield state, or the material is subject to slip at the boundary 

due to specific microscopic architecture?  

 
Fig. 6.16. Answers of CR sample in oscillatory tests under different experimental conditions 

(strain/stress amplitude sweep ), see also Figure 6.1. 
 
However, the present experiments prove that observed macroscopic phenomena is 

characterized by the same value of the strain, which make sense if that critical strain value is a 

well defined material property. If what we observe is a manifest of slipping, it means that slip 
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at the boundary (for a given boundary geometry) is independent on the type of applied test 

and on the history of deformation.  We consider the first explanation more plausible.  

The experiments were completed for CR sample by several strain and stress controlled 

tests. In Figure 6.16 are shown three amplitude sweeps with very similar 

qualitative/quantitative results: same location of the yield point as the previous findings, i.e. 

 and  . Here is also present the second plateau corresponding to a 

stress value of   , see also Figure 6.10. 

 
Fig. 6.17. Frequency sweep (controlled strain and controlled stress experiments) for CR sample. The 
corresponding values of loss tangent are: tan  = 2.6 (point A – controlled strain), respectively tan  = 

0.52 (point B – controlled stress), see Figure 6.16. 

 
Fig. 6.18.  Shear stress amplitude and loss tangent in frequency sweep test at different input strain 

amplitudes (CR sample). It is important to remark that rheological characteristics recorded in the stress 
controlled experiment from Figure 6.17 are also found in the strain controlled test, see location of 

point B in the two graphs. 
 

Figure 6.17 presents frequency sweeps performed in MAOS domain. The correlation 

between test is very good if you assume the existence of a plateau in shear stress amplitude 

vs. strain amplitude: at   the strain controlled test is characterized by  and 

a) b) 
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the stress controlled gives a deformation amplitude of , data which are consistent 

with results from Figure 6.16. Moreover, the strain controlled impose a flow within the 

sample (point A is after the peak in , ), whereas the stress controlled keeps the 

sample as a solid-like (point B is before the peak in , ), see also Figure 6.18.  

The decompositions of the output signal using the FT-rheology are shown in Figure 

6.19. The tests were performed with and without the DSO system, using for the stress input 

test (Figure 19.a) the wave analysis modulus of Physica MC 301 rheometer. There are 

observed: (i) the sharp increasing of the third harmonic ones the MAOS regime is established 

(more than 10% from A1 at strain amplitudes higher than ), (ii) the maintaining of the 

second harmonic generally below 1% from A1 for all regimes (with exception of the data 

extracted from the frequency sweep test in Figure 19.b). 

 
Fig. 6.19. The normalized Fourier harmonics extracted from stress input (a) and strain input (b)  tests 
at   . The results mark the same interval for critical values of strain, respectively stress, 

amplitudes from which the materials start to flow. 
 

The increasing of the third harmonic is not monotonous in MAOS regime, which 

suggest the existence of the plateau in the flow curve. The existence of the second harmonic at 

relative amplitudes lower than 1% is normal for measurements performed with standard 

equipment. However, the data at low values for frequency sweep conditions (Figure 19.b) 

might suggest not necessary the existence of slip [101], especially if the material is 

characterized by non-monotonic constitutive relation [10], [11], [13], [16], [45], [132]. 

    

6.5. CONCLUSIONS 

 
The present chapter was concerned with rheological investigations of two soft matter 

samples in oscillation and simple shear flows. The tested materials, a cosmetic cream (CR) 

and polysiloxane (PS), disclose a well defined yield state characterized by a critical value of 

a) b) 
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strain deformation, , which corresponds to the peak of  in the strain sweep amplitude 

experiments and with the onset of the plateau in the shear flow curve. Oscillatory testes 

performed in MAOS and LAOS regimes offer value information about the rheology of soft 

matter, in particular the measurement of  which defines the onset of material fluid 

behavior.  

The present experiments prove very good quantitative correlations of the data measured 

in shear and oscillation. At the same time the results are consistent with the existence within 

the soft matter samples of a yield state which defines the materials rheology at the onset of the 

fluid behavior, an important parameter for many practical applications in varied domains 

[156], [236], [242]. The yield state is direct associated with the existence of the plateau in 

quasi-steady flow curve, which is in many cases the consequence of a non-monotonic 

constitutive relation [13], [16], [45], [132], [250].  

 
Fig. 6.20. The evidence of plateau behavior in the topology of Lissajous figures shear stress vs. shear 

rate for CR sample: a) well defined flow behavior at  , b) detail with the 
transition/plateau domain  (input stress amplitude tests at ). 

 

a) 

b) 
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This constitutive relation is unstable and normally generates shear bandings or kinks in 

the velocity distribution, phenomena which is not trivial to be distinguished from the real slip 

of the sample at the wall (especially if the slipping is located at nano- or micro-distances from 

the wall) [27], [36], [84], [85], [150]. We consider oscillatory rheology an useful technique to 

investigate not only the existence of plateau behavior and yield state, but also the presence of 

slip  [82], [114].  

For example, in Figure 6.20 the topology evolution of the Lissajous figures disclose 

clear the plateau region, i.e. the transition from visco-elastic behavior to the fluid one (Figure 

6.20.b). The existence of wall depletion phenomena or possible slip can be observed in the 

same oscillatory test, if for each imposed stress amplitude we perform several oscillations 

cycles (with the same sample) and record the differences in the maximum rate magnitude, see 

Figures 6.21 – 6.22. 

 
Fig. 6.21.  Doubled Lissajous figures for different imposed stress magnitude. In the flow domain the 

difference between two consecutive tests is sharp increasing, see Figure 22, which suggest 
 possible existence of slip. 

 
By extracting the difference of the maximum rate magnitude (Figure 6.22) one can 

highlight both the critical shear stress value (coresponding to all results presented in 

Paragraphs 6.2-6.4 for CR sample) which marks out the onset of the instability domain (the 

plateau zone) but also the possibility of slip occurrence (between sample and plate) at very 

large shear stresses.  

The results of this study demonstrated that for soft matter materials in which the yield 

state is present the correspondence between the simple shear and oscillatory tests in MAOS 

and LAOS domains can be established.  Consequently, the onset of the flow behavior (marked 

by the critical yield stress) in simple shear motions can be detected also in dynamic shear 

tests. Its location coincides with the strain amplitude corresponding to the peak in the viscous 
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modulus, so the yielding behavior is better characterized by a critical value of strain, rather 

than a unique value of the yield stress.  

 
Fig. 6.22.  The difference in maximum rate magnitude between two consecutive cycles of oscillatory 

tests performed at imposed stress amplitude. In detail is shown the variation of maximum rate 
amplitude with the shear stress. The region were possible slip can be observed follows the instability 

domain, which is associated with the plateau. 
 

The existence of material instabilities or/and slip in shear flows of soft matter systems is 

still an open subject and also a challenge for developing novel techniques in rheometry and 

flow visualizations. If we make now correspondance between the investigations – squeezing 

and shearing of complex fluids (as CR and PS) we find consistent results. In both tests the 

samples disclose the elastic component, the shear thinning character and same dynamics in 

oscillation. 

One important remark is that present squeeze results are exclusivley characterizing the 

process beyond the yield stress, while the flow field is completely developed. To analyze the 

onset of the flow, and to determine the yield stress in squeezing, there are necessary 

controlled stress measurements (the corresponding of creep in shear) which at the moment are 

not available in our laboratory. 
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CChhaapptteerr    77.. THE INFLUENCE OF SURFACE MICROSTRUCTURE ON 

THE SQUEEZING FORCE  
 

 
7.1. THE INFLUENCE OF SURFACE MICROSTRUCTURE ON NEWTONIAN FLUIDS 

ADHESION PROPERTY 
 

As shown in Paragraphs 2.52 and 6.5 the solid-liquid contac, i.e. the adherence 

conditions, t has a significant influence on flow dynamics and it represents a key factor in 

rheometry. The presence of slip at solid surface and wall depletion phenomena, already 

mentioned in Paragraph 2.5.2 and all over the thesis, can induce major effects on the flow 

dynamics and, of corse, on the measurements of force, respectivley torque. In this last chapter 

we shall not focus on these phenomena.  

The investigations are driven by the latest application in fluid mechanics: the influence 

of patterned surfaces on the flow field, a major subject for research in lab on a chip domain of 

microfluidics [15], [47], [147], [238]. The influence of surface microstructure on the normal 

force variation in simple squeeze test is being analyzed experimentally in Paragraph 7.2 and 

numerically in Paragraph 7.3. This study is novel in rheometry and we belive in its potential 

application in developing a new procedure to investigate the rheology of complex fluids in the 

vicinity of solid surfaces. 

 

7.1.1. The experimental setup 

 
The investigations were performed within REOROM laboratory using a visualization 

system presented in Figure 7.1 and using three silica disks with different surface 

microstructures.The setup includes a Lumenera CCD camera for video recording, a light 

source and a computer. The drops were placed on the solid solid with a syringe mounted on a 

vertical slide, keeping constant the distance between syringe nozzle and the surfaces. The 

development of the drop and the tracking of fluid-solid contact angle were recorded using 

Blubbery Flash Recorder and stored in avi files. As previously mentioned, the surfaces used 

for this analyze are three silica plates with different microstructures: a smooth plate, a plate 

with a micro textured surface (see Figure 7.1.b) and plate with micro-spirals (see Figure 

7.1.c). Surface micro architecture dimensions are presented in Annex 9. 
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Fig. 7.1. Video acquisition system used to determine the influence of surface microstructure on 

Newtonian fluids contact angle: experimental assembly (a) silicon surface micro textured (b) and 
micro-spiral (c). 

 
After recording droplet evolution in video files, successive images were extracted by 

using Movie Maker software. The comparison was made between images corresponding at an 

observation time of 80 s, at which it is considered that each drop has reached steady state 

contact with the solid surface. 

 
Fig. 7.2.  Contact angle determination by measurements of the droplet height and the radius of circle 

segment corresponding fluid-solid contact, performed using Image-Pro software. 
 

Contact angle determination was made by measuring droplet height and the radius of a 

circle segment corresponding fluid-solid contact using Image-Pro software. After extracting 

this information, the contact angle  was calculated using the following expressions [255]: 

r 
H 

a) b) 

CCD 
camera 

syringe 
containing 
the samples  

light 
source 

a) 

b) c) 

analyzed 
drop 

Si 
microstructured 

plate 
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( 7.1) 

 

( 7.2) 
 

( 7.3) 
 

7.1.2. Contact angle between various Newtonian sample and micro-structured surfaces 

 
Figure 7.3 presents the influence of surface microstructure on different Newtonian 

fluids contact angle: water ( ), glycerin ( ), honey (

), mineral oil ( ). These results are showed in Table 7.1.   

 
Fig. 7.3.  Influence of surface microstructure on Newtonian fluids contact angles: water (a1, a2, a3), 
glycerin (b1, b2, b3), honey (c1, c2, c3), mineral oil (d1, d2, d3). The contact surfaces have different 

micro architectures: plane surface (a1, b1, c1, d1); micro-textured surface (a2, b2, c2, d2); micro-spiral 
surface (a3, b3, c3, d3). All images correspond to an observational time of 80 s at which the drop is 

considered to have reached steady state value. 
 

Using micro-textured and micro-spiral surfaces, the contact angle increases significantly 

in comparison with the plane surface for all tested samples. The micro-spiral surface brings an 

a1) a2) a3) 

b3) 

c3) 

d3) 

b1) 

c1) 

d1) 

b2) 

c2) 

d2) 
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increase of  more than 150% (170%) for water contact angle in comparison with the plane 

surface, for mineral oil the increase being of almost 63%. For glycerin and honey, the micro-

spiral surface brings a reduced increase of contact angle, 46% and respectively 26 %.    

 
Table 7.1. Measured contact angles for all tested samples in contact with different silica micro 

structured surfaces: plane surface, micro textured surface, micro—spiral surface. 
Surface Plane plate Micro-textured plate Micro-spiral plate 
Fluid θ [o] 
Water 28.35 31.3 76.73 
Glycerin 51.54 55.9 75.51 
Mineral Oil 14.92 18.49 24.28 
Honey 69.94 72.54 88.015 

 
Besides the influence of the surface patterns, the contact angle increase seems is 

dependent on the samples viscosity. The increase of the contact angle and the change of the 

adherence condition is significant for less viscous fluids (like water and mineral oil) and less 

obvious for high viscous fluids (glycerin, honey). Within this paragraph the influence of 

surface micro architecture on pure viscous samples contact angle was proven, hence on the 

adherence propriety at fluid-solid contact.  

Changing surface micro architecture from plane to micro-textured give rise to a increase 

of the fluid-solid contact angle (in some cases the surface being transformed from hydrophilic 

to almost hydrophobic). Moreover when the surface presents a micro-spiral the contact angle 

increases significantly, this phenomenon being favored for low viscous fluids. 

 

7.2. CONSTANT VELOCITY SQUEEZE FLOW IN THE PRESENCE OF MICRO-

STRUCTURED SURFACES 

 
In the previous section the influence of surface microstructure on fluid adherence and 

wetting proprieties has been proven. Considering the importance of a possible control of 

fluid-solid adherence conditions, the present paragraph presents a study on the influence of 

microstructure on the normal force measured in constant velocity squeeze tests and implicitly 

on the Newtonian viscosity coefficient measured in this type of tests.  

A series of measurements were performed by using Physica Anton Paar MCR 301 

rheometer, presented before in Paragraph 5.2.1 with parallel-plate glass geometry (43 mm). 

On the lower plate of the rheometer the silica surfaces were placed successively in order to 

modify gap architecture during squeeze flow. 

The plates were fixed by adding a small amount of glue on the lower surface of the 

rheometer and by pressing the silica plates on this adhesive. After fixing each plate the 

nominal gap was set through the automatic gap setting option of MCR 301, Tru gap option. 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 

Chapter 7. The Influence of Surface Microstructure on the Squeezing Force 
 

  176  
  

The analysis was performed on two Newtonian samples with different viscosities, 

mineral oil ( ) and honey ( ), at a constant temperature of 20C 

and squeezing velocities of . The dimensionless  number (eq. 3.1, 

Paragraph 3.2.1) that expresses the influence on inertial and viscous forces is exclusively 

dependent on film thickness variation as shown in Figure 7.4.  

 
Fig. 7.4.   number variation in constant velocity squeeze flow of  mineral oil (a) and honey 

(b) at . 
 

At high values of film thickness, corresponding to the beginning of squeezing tests, the 

flow is dominated by the inertial forces (large ). Once decreasing film thickness  values 

decrease and the flow becomes dominated by viscous forces. For the investigated squeezing 

motion,  values may be considered small in comparison with other flow motions (as for 

example shear flows):  for mineral oil sample,  for honey sample in the 

film thicknesses and squeezing velocities frame used for measurements.  

Figure 7.5 presents the results obtained for the mineral oil sample at different squeezing 

velocities in the presence of micro structured surfaces. For all velocities there can be 

distinguished two gap dependent zones in which the influence of surface microstructure acts 

differently: (i) a large thickness domain characterized by the onset of the flow; (ii) a low film 

thickness domain where the flow is fully developed (especially on the radial direction). 

The superior limit of this domain depends exclusively on the squeezing velocity: as 

example for the mineral oil sample it starts at a value of  at small squeezing 

velocities  and it increases at  for larger velocities  (

). Surface microstructure influences the motion, this can be firstly observed in the 

change of slope of normal force distribution (respectively of the flow index). This 

phenomenon is obvious at small squeezing velocities and is being diminished once the 

velocity is increased. At very small velocities  , the presence of 

a) b) 
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microstructure brings an increase of measured force values is on the whole thickness domain 

(in comparison with the plane surface). At large values of film thickness, the presence of 

microstructure increases the force.  

 
Fig. 7.5. Normal force dependency on film thickness for a mineral oil sample during simple squeeze 
tests at ,  and . Surface microstructure influence on the 

normal force: plane plate (PSI), micro-textured plate (PTXT), micro-spiral plate (PSP) 
 

At small values of film thickness the force values decrease in the presence of the 

microstructure the influence being manifested oppositely. Is can also be noticed that the 

a) 

b) 

c) f) 

e) 

d) 
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micro-texture surface has a more pronounced influence than the micro-spiral surface in 

squeezing motion, even tough the measurements of fluid-solid contact angle disclose a more 

pronounced influence of the micro-spiral surface. 

 
Fig. 7.6.  Normal force dependency on film thickness for a honey during simple squeeze tests at 

,  and . Surface microstructure influence on the normal 
force: plane plate (PSI), micro-textured plate (PTXT), micro-spiral plate (PSP) 

 
The same behavior is observed for honey sample (Figure 7.6) even tough the 

phenomenon is diminished due to the higher value of viscosity coefficient of the sample. Also 

in this case the presence of microstructure brings an increase of normal force values on the 

large film thickness domain and a reduction of the force at small film thicknesses. Similar to 

the mineral oil sample, the results obtained for honey indicate a different behavior of the 

sample when using a micro structured surface in comparison with the case where a plane 

surface is used in comparison with the plane surface.  

This behavior has been observed also in simple and dynamic shear tests [15], [47], 

[147]. For Newtonian fluids (i.e. mineral oil sample – IK), viscosity values decreased 

significantlyin the resence of micro-textured (patterned) surfaces as seen in Figure 7.7, [15]. 

a) 

b) 

c) 

d) 
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In the case of viscoelastic fluids, with higher viscosities this effect is diminished, accordingly 

to the squeeze measurements presented above (Figures 7.5-7.6). 

 
Fig. 7.7.  Influence of patterned surfaces on shear viscosity of  pure viscous, mineral oil sample 

(a) and viscoelastic, PAA solution (b) in simple and oscillatory shear tests [15]. 
 
One concludes that in the presence of microstructures the Newtonian fluid discloses a 

lower friction at the wall (for small gaps) in comparison with the smooth surface. This 

phenomenon is generated by a partial slip of the patterned surface, which can be considered as 

wall depletion phenomena. On the base of such measurement we can compute the wall slip 

velocity, and relate this velocity with material/fluid rheometry. 

 

7.3. NUMERICAL SIMULATION OF CONSTANT VELOCITY SQUEEZE FLOW IN THE 

PRESENCE OF MICRO-STRUCTUREDSURFACES 

 

In the absence of a visualisation system that may allow an analysis of the flow in the 

gap, the numerical simulation of the phenomenon in the presence of modified surfaces may be 

a very useful tool of investigation, as already proven in Chapter 4. The numerical 

investigations were performed using the spiral geometry as a model in Fluent software with a 

quasi-steady approximation of the squeezing motion. 

 

7.3.1. The construction and meshing of the flow domain 

 
The lack of symmetry of this particular geometry doesn’t allow the reduction of 

geometry dimensions (as for the simulations performed in Chapter 4), in this case being 

necessary the use of a 3D flow domain. The complexity of surface microstructure has led to 

its construction with different software, Solid Works. After building up the geometry, the 

flow domain was meshed using Gambit preprocessor software. 

a) b) 
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Fig. 7.8.  Construction of geometries and meshing of floe area for the micro-spiral geometry: top view 

of the lower plate (a); 3D arbitrary view of the geometry (b); transversal section of the mesh at z=0 
with detail on the outlet zone (c) 

 
The virtual geometry reproduces closely the real model containing 63 semicircles on the 

lower wall, semicircles that are connected to form the micro-spiral channel that has a width of 

 and a  height. The virtual geometry has a radius of   

 the total film thickness is defined as a sum of the height of the flow domain 

  and the height of the micro-spiral chanel  as shown in Figure 

7.8. The mesh was made using 3D tetrahedral elements, the final geometry having almost 

3.000.000 cells. For comparison there were build two other parallel-plates 3D geometries 

corresponding to film thicknesses of    and . The simulations were 

performed using the rheological parameters of mineral oil sample in constant velocity squeeze 

flow at , the motion being considered steady. The convergence criterion 

is reached after 200 iterations but the results presented are however obtained for 400 

iterations. 

 
7.3.2. Simulation results for mineral oil sample 

 
In order to represent the flow field a transversal iso-surface was created, in (x, o, y) 

plane, at  (Figure 7.9.a). The presence of microstructure leads to a decrease of the wall 

shear stress values from  in the case of plane surfaces at  for the 

micro structured ones (see Figure 7.10). Also it can be noticed that in the vicinity of the 

microchanel, and especially inside the spiral, the wall shear stress is naught, which leads to 

r 

a) b) 

c) 
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modified adherence conditions and implicitly changes of flow dynamic in the gap (see also 

Figure 7.10.b). Figure 7.11 presents the velocity distribution in the gap. For the micro 

structured geometry the maximum velocity decreases but its distribution seems to be more 

uniform in comparison with the smooth plate geometry.  

 
Fig. 7.9. Transversal iso-surface construction (at ) for numerical results representation of the 
simple squeeze flow of mineral oil (a), pressure distribution in the gap for a squeezing velocity of 

. 
 

 
Fig. 7.10.  Wall shear stress distribution in the gap obtained from the numerical simulation of constant 
velocity squeeze flow ( ) of mineral oil sample for: micro-spiral geometry (a) with detain 

on the last two microchanels near the outlet area (b) and the parallel plane plate geometry (c). 

 
Fig. 7.11.  Velocity distribution in the gap obtained from the numerical simulation of constant velocity 
squeeze flow ( ) of mineral oil sample for: micro-spiral geometry (a) with detain on the 

last two microchanels near the outlet area (b) and the parallel plane plate geometry (c).  
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Moreover a recirculation zone is observed in the micro-chanel (see Figure 7.12), where 

the velocity is very small. According to the velocity distribution, the characteristic  number 

is very small in the microchanel and increases in the outlet zone, see Figure 7.13.  

 
Fig. 7.12.  Velocity vectors in the gap obtained from the numerical simulation of constant velocity 

squeeze flow ( ) of mineral oil sample for the micro-spiral geometry. Fluid recirculation 
in the microchanel.   

 
Fig. 7.13.  Cells  number distribution in the gap obtained from the numerical simulation of constant 
velocity squeeze flow ( ) of mineral oil sample for: micro-spiral geometry (a) with detain 

on the last two microchanels near the outlet area (b) and the parallel plane plate geometry (c). 
 

Table 7.2.  Normal force values obtained through the numerical simulations at constant velocity 
squeeze flow of mineral oil sample, using the quasi-steady approximation of the flow. Surface 

microstructure influence on force values; Comparison with the theoretical prediction  
for parallel smooth plate geometries. 

  Suprafaţă Gap [mm] F NU [N] FTH [N] 

1 
Microspiral  0.4 0.2959  

Smooth 0.4 0.3360 0.3292 
Smooth 0.5 0.1722 0.1686 

0.01 
Microspiral 0.4 0.004219  

Smooth 0.4 0.0044710 0.0032931 
Smooth 0.5 0.00310672 0.0016861 

 

Computed normal force values are presented in Table 7.2 a small decrease is found for 

a squeezing velocity of . Since constant velocity squeeze flow is a complex 

2.72 e-7 1.13 e-2 

6.60 e-6 1.08 e-2 
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unsteady motion, the tracking of the micro structured surfaces influence on the normal force 

may be possible by using a transient unsteady approach. Such simulations may be performed 

only in the presence of performant hardware resources that may allow a reduction of the 

computational time, taking into consideration geometry dimensions and the increased number 

of cells that are needed to obtain a good approximation of the real phenomenon. 

 

7.4. CONCLUSIONS 

 
In this chapter the influence of surface microstructure on the fluid-liquid contact angle, 

on the adherence properties and the dynamics of the constant velocity squeeze flow was 

investigated. It has been showed that the presence of microstructures on the solid surfaces can 

lead to an increase of almost  of the contact angle, especially for low viscous fluids, 

microstructure influence being exclusively dependent on viscosity coefficient value.  

For the simple squeeze flow the presence of micro structured surfaces disclose two 

opposite actions depending on the film thickness: an increase of normal force at high film 

thicknesses, where the flow is governed by the inertial forces; a decrease of normal force 

values at low gaps, where the flow is governed by the viscous forces.  

The numerical simulations, performed using a quasi-steady approximation, disclose a 

modified adherence property in the presence of micro-spiral surface trough the reduction of 

wall shear stress values and a modified velocity distribution the gap. However, in order to 

analyze numerically the microstructure influence on normal force values it is necessary to 

perform unsteady transient simulations (deformable mesh) using a more refined mesh, such 

simulations requiring performant hardware resources that are not yet available in Reorom 

Laboratory. 

The present numerical simulations are qualitativley consistent with experiments and 

bring a new insight on the flow dynamics in the presence of such patterned surfaces. The 

results are encouraging and prove the capabilities of Computational Rheometry to be used as 

an efficient tool for material testing. 

 



Rheological Characterization of the Nonlinear Behavior of Complex Fluids in Shear and Squeeze Flows 
Chapter 8. Final Conclusions 

 

  184  
  

 

 

CChhaapptteerr    88.. FINAL CONCLUSIONS 
 

 

8.1. GENERAL ASPECTS 

 

This thesis was dedicated exclusively to the rheological characterization of simple and 

complex fluids in squeezing and shear flows using available rheometric testing procedures. 

The main objective of the study was to analyze if the squeezing process might be used as a 

feasible procedure to test fluids rheology.  

The thesis includes a consistent experimental and numerical study of the squeezing 

phenomenon in simple and dynamic motions, concerning mainly two issues: (i) free surface 

influence on flow dynamics and normal force distribution; (ii) the analysis of linear and 

nonlinear viscoelaticity of complex fluids in oscillatory squeeze flow. The results obtained 

from numerical simulations show a good correlation with the experimental measurements. 

Experimental investigations of oscillatory squeeze flow disclose the necessity of 

introducing a correction factor for normal force measurements and also a calibration factor of 

the force transducer. The investigation of complex fluids using oscillatory squeeze motion 

was performed for both linear and nonlinear domains, the measurements being compared with 

those obtained for purely viscous fluids. Due to the lack of data on complex fluids rheology in 

squeezing flow corroborated with the technical limits of our rheometer, the results presented 

have mainly a qualitative relevance.  

The study of constant velocity squeeze flow was focused on two subjects: (i) the 

modeling of free surface at the edge of the gap and its influence on measured thrust; (ii) 

investigations of the imposed boundary conditions influence on the pressure distribution in 

the gap. In relation with the latest subject,  

Chapter 7 presents a fundamental problem encountered in the literature: the fluid-solid 

adherence conditions and their control. It has been demonstrated that surface microstructure 

influences the contact angle formed by purely viscous fluids. By performing a series of 

constant velocity squeeze tests in the presence of different micro structured surfaces, the 

influence of micro texture and micro-spiral architecture on the measured normal force was 

proven. 
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 In addition to the detailed study of Newtonian and complex fluids in squeeze motions, 

the thesis includes an extensive chapter dedicated to the nonlinear behavior of complex fluids 

in simple and dynamic shear motions. 

The nonlinear rheology of complex fluids was determined by linking simple and 

dynamic shear tests, the response recorded macroscopically (flow curves, dynamic modules, 

Lissajous curves) with the micro structural changes in the samples. 

One main conclusion of the thesis is the necessity of coupling experimental 

measurements with numerical simulations in order to obtain a feasible testing procedure for 

fluid rheology in squeezing flows. For rheometry the squeeze flows within thin film 

approximation are attractive due to their apparently experimental simplicity. 

Our investigations proved that fluid dynamics in squeeze flow is influenced by many 

factors as inertia, edge effects, wall depletion. Still, two major problems were encountered 

during the experimental investigations: (i) at large gaps the use of a high sensitivity force 

transducer is imperative to obtain qualitative data, but this rise the costs of experimental 

equipment; (ii) at low gaps a small lack of plates parallelisms and the edge effects have a 

large influence on the measured data and yet the available analytical solutions are valid only 

for very low gaps and pure viscous fluids. Under these conditions a “trusty  measurements 

domain”  was established for which the data was analyzed.  

The coupling of experimental and numerical investigations is obviously necessary to 

have at hand consistent data with the theoretical framework of squeezing motion. Therefore, 

one concludes that squeezing might be an alternative motion used in rheometry (apart shear 

flows) but only for a well defined range of imposed strain amplitudes and frequencies (chosen 

in concordance with force transducer’s working domain).  

Due to the complexity of flow and the high costs of devices involved we do not expect 

that commercial rheometers based on oscillatory squeezing flow to be available in the near 

future. Squeezing flow remains a very useful measuring technique and it is very indicated for 

laboratory experiments and research, where complex fluids have to be analyzed and 

characterized in complex flows.  

We also recommend squeezing as the most indicated testing procedure for the 

determination of slip and wall depletion phenomena in the presence of microstructured 

surfaces. 
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8.2. PRACTICAL APPLICATIONS OF SQUEEZE FLOW MOTION 
 

The interest shown to this complex flow is due to the numerous applications in varied 

fields (mechanic engineering and tribology, rheology, biology, geology, constructions), to the 

presence of motion in numerous industrial processes of production or processing (hot 

stamping, gluing with adhesives, lithography by nano-printing, compression of construction 

materials, food industry) and in natural, biologic processes (mastication, joints, valves, 

biofluids, earth settling), as specified in Paragraph 3.1.1. 

Various applications are found in the engineering field, the most obvious being fluid 

lubrication in bearings, gear couplings, machines, car engines, naval engines, the fluid film 

preventing the solid-solid contact and the surface deterioration. Also, squeeze motion is found 

in the fluid damping mechanism often encountered in the car building industry. The elasto-

hydrodynamic contact of car tyres with the wet asphalt supposes the squeezing of the fluid 

among the skid-proof grooves of the tyre.  

The reduction of devices dimmensions gived rise to nano or microscopic scale 

applications of squeeze flow, in the so-called Micro-Electro-Mechanical Systems - MEMS 

such as: fluid micro-dampers, sensors, actuators, the manufacturing process of lithography by 

nano-printing of micro and nano-devices. 

 One of the most important field of applications for the squeeze motion is found in 

byology and medicine: human articulations - squeeze motion between porous layers; blood 

micro-circulation; closing of human cardiac valves and mechanical cardiac valves.  

Nevertheles, rheology and rheometry are part of these application domains since 

squeeze phenomenon supposes a complex motion which includes both shear components (in 

the vicinity of solid walls defining the squeeze process) and elongation components (in the 

middle of the gap). Due to these kinematic features, the squeeze flow has been intensely used 

along the years to determine the rheological properties of simple and complex fluids.  

 

8.3. ORIGINAL CONTRIBUTIONS 

 
The innovative character of the thesis can be found throughout all its contents, by 

linking conventional experimental test methods with numerical simulations of real flows, 

suporting a new concept in rheology: Computational Rheometry in Rheology (see. Figure 

1.1). Hence, all experimental investigations carried out in this study for the squeezing flows 

were accompanied by numerical simulations.  
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The original contributions were focused on the following aspects: 

(i) The constant velocity squeeze flow was investigated also using a quasi-steady 

approximation of the motion, which brings a significant reduction of the computational 

time, and a very good correlation with the transient (deformable mesh) approximation 

and the analytical predictions. The results obtained for the variation of normal force, 

pressure distributions on fluid film thickness, radial distributions and axial velocity 

distribution are almost identical for all three methods mentioned previously (the 

analytical model, transient numerical modeling and numerical modeling in a quasi-steady 

approximation). 

(ii) Investigation of free surface influence and slip/no slip conditions on the distribution of 

normal force in both constant velocity and oscillatory squeeze flow.In the case of 

constant velocity squeeze flow, the numerical simulations coupled with the free surface 

evolution and measured normal force during experimental investigations are suggesting 

the presence of a partial slip during the experiments between the mineral oil and 

rheometers plates.  

(iii) Moreover, by defining the squeezing viscosity function and its dependence on the apparent 

squeezing rate some representation of measured viscosity variation in squeeze flow has 

been made. The results for Newtonian fluids are qualitativley consistent with the data 

from shear experiments. The squeeze function for non-Newtonian fluids disclose a shear 

thinning behavior more relevant for cream and gel samples which is also consistent with 

the computed shear flow index. 

(iv) The approach itself of the oscillatory squeezing motion in order to establish a procedure for 

rheological characterization of simple and complex fluids is innovative, studies of these 

procedures being used only in a few laboratories around world. The rheological 

characterization of pure viscous and complex fluids in both simple and oscillatory 

squeeze motion (on linear and nonlinear viscoelasticity domains) corespond 

qualitativeley with the shear rheology of these samples.  

(v) Another major contribution of this work is the correlation between simple and dynamic 

shear motions for analysis of nonlinear viscoelatic behavior of complex fluids. Chapter 6 

introduces a new method to determine and define the yield state of complex fluids by 

establishing a critical strain that defines the state of yield stress, or the onset of the flow 

in these materials.  

(vi) Finally, Chapter 7 brings another original contribution by investigating the influence of 

surface microstructure on fluid-solid contact angle and on the dynamics of complex 

flows, namely the complex squeezing motion. 
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8.4. FURTHER DEVELOPMENT OF THE STUDY 
 

The limited resources available throughout the completion of this study, which may 

include experimental instrumentation, hardware resources available for the numerical 

simulations and not at least the most important resource of all - time- has led to complete this 

thesis in the present format. However, after addressing important issues of flow dynamics, 

with applications in many areas (rheology, tribology, hydraulics, food and cosmetics industry, 

bioengineering, microfluidic) the further development of this study is encouraged in the 

following directions: 

(i) the introduction of viscoelasticity in numerical simulations of complex motions like 

squeeze flow; 

(ii) free surface modeling for complex fluids in squeeze flow by using both simple and more 

complex geometries; 

(iii)  the construction of more performant experimental setups that may allow microscopical 

flow visualizations during shear motion of complex fluid in order to better understand 

their behavior on the nonlinear viscoelastic domain; 

(iv) further studies of surface microstructure influence on the flow dynamics and measured 

rheological properties of simple and complex fluids; 

(v) introduction of nano and micro structures in microfluidic applications to improve flow 

dynamics and mixing.  
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ANNEXES 

 
ANNEX 1. Rheological models dependency on their constitutive parameters 

 
Viscosity vs. shear rate curve is dependent on constitutive parameters (also called the material 

parameters) value used for the rheological model. In this annex the influence of constitutive 

parameters on the variation of viscosity function for three rheological models (Carreau-Yassuda, 

Bingham, Oldroyd) is presented. For each model, the influence of each parameter is determined 

successively,  whereas the other parameters are kept constant. 

The Carreau Yassuda Model (eq. 2.16) 

Fig. A. 1. Viscosity curve variation for Carreau-Yasuda model, depending on constitutive parameters: 
n (a), k (b), a (c). 

  
In the case of  Carreau-Yassuda  model, the curves disclose a significant dependence of the viscosity 

curve of  and , whereas  doesn't have a significant influence (Figure A.1). 

 
Table. A. 1. Parameters used for the representation of Careau-Yasuda model dependency  

on constitutive parameters. 
     

0.5 0.01 0.5 0.2 {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1} 
0.5 0.01 {0.1, 0.5, 0.7, 0.9, 1} 0.2 0.4 
0.5 0.01 0.5 {0.1, 0.2, 0.3, 0.4, 0.5, 1} 0.4 

a) b) 

c) 
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The Bingham model (eq. 2.18) 

 
Fig. A. 2. Viscosity curve variation for Bingham model, depending on constitutive parameters: 

n (a), k (b), σ0 (c). 
 

Table. A. 2. Parameters used for the representation of Bingham model dependency  
on constitutive parameters. 

   
3 {0.01, 0.1, 0.5, 0.7, 0.9, 1} 1 
3 1.2 {1, 2, 4, 8, 20} 

{1, 3, 5, 10, 20, 50} 1.2 2.5 
 

 
In the case of  Bingham model, the curves disclose a significant dependence of the viscosity curve on 

 and , whereas  doesn't have a significant influence. 

 

ANNEX 2. Approximation of the experimental modules of a viscoelastic fluid by a Maxwell 

model with 8 elements 
 

Figure 2.9 (Paragraph 2.3) presents the approximation of the experimental modules  and  for a 

viscoelastic fluid (shampoo) with the Maxwell model with 8 elements, with variable relaxation time steps, at 

different amplitudes of the applied strain:  (a);  (b) şi   (c).  

a) b) 

c) 
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Fig. A. 3. Analysis module of Origin 8.0 software used for the aproximation of the experimental 

measurements. 
 

Table. A. 3. The relaxation times and corresponding viscosities values for the aproximation of fluid 
viscoelastic behavior with a Maxwell model (8 elements) for a initial applied deformation of 

  . 
  ηs 0.2725 
λ1 0.03279 η1 3.66036 
λ2 0.00993 η2 0.63648 
λ3 0.06444 η3 7.48796 
λ4 0.44446 η4 0.91164 
λ5 3.61E+24 η5 6.61E+10 
λ6 918.8753 η6 130 
λ7 2.45E+20 η7 9.20E+10 
λ8 9.21E+18 η8 1.43E+06 

 
Table. A. 4. The relaxation times and corresponding viscosities values for the aproximation of fluid 

viscoelastic behavior with a Maxwell model (8 elements) for a initial applied deformation of 
  . 

  ηs 0.27794 
λ1 0.03092 η1 1.8569 
λ2 0.01156 η2 0.6 
λ3 0.06211 η3 10.85 
λ4 0.10034 η4 0.65 
λ5 0.50296 η5 1.74 
λ6 16182.54 η6 60 
λ 7 9.86E+17 η7 0 
λ8 1.01E+13 η8 5.18E+11 

 
Table. A. 5. The relaxation times and corresponding viscosities values for the aproximation of fluid 
viscoelastic behavior with a Maxwell model (8 elements) for a initial applied deformation of  

. 
  ηs 9.22E-05 
λ1 2.85E-06 η1 0.68398 
λ2 0.05822 η2 3.2 
λ3 0.05819 η3 6.5 
λ4 0.13029 η4 2.68 
λ5 13304.6284 η5 0 
λ6 1.25945 η6 1.018 
λ 7 45890.35042 η7 0 
λ8 1.36E+12 η8 0 
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For the interpolation an 8 elements Maxwell model (see Paragraph 2.3) was introduced in 

Origin 8.0 (see Figure A.4) , and by multiple iterations the measured value were aproximated with 

different relaxation times, presented in Table A.4 - A.6. 

The obtained relaxation times vary depending on the intensity of the applied strain, 

respectively of the stress stored in the structure of the material during the yield, the results obtained 

following the approximation of the experimental values. At high strains (or applied deformations) 

some elemets of Maxwell model are nought (the viscosity is zero) indicating that the material hasn’t 

got enough time to relax as at low strains where all the elements are present. Henece, at high 

deformation the measurements may be aproximated with a Maxwell modell that has less than 8 

elements. 

 
ANNEX 3. Determination of radial and axial velocity formulations for the simple 

squeeze   flow of newtonian fluids between paralel plates. 

 
In the relations (2.41 - 2.44), Paragraph 2.3.3,   and  represent the components of velocity 

on radial direction, respectively axial, in the squeeze flow.  

 
Fig. A. 4. Squeeze flow of Newtonian incompressible fluid between paralell plates  

in a double symmetry geometry. 
 

In the case of the symmetrical axial squeeze flow with constant rate, the velocity distributions 

are obtained from the particular case of Stokes approximation, completed by the continuity equation, 

in the following hypothesis: (i) purely viscous incompressible fluids, in laminar flow; (ii) the geometry 

is defined by solid and impermeable surfaces to which the fluid adheres; (iii)  inertia and the 

gravitational forces are neglectable compared to the pressure forces and to those of viscous friction; 

(iv) no other exterior mass force is deemed a factor that influences motion; (v) the motion is 

characterized by the velocity components  and , the component  being neglectable; (vi) velocity 

gradients on the directions Or and Oφ are neglectable compared to the rate gradient on the normal 

direction; (vi) fluid film thickness is considered very small in comparison with the dimensions of the 

geometry which defines the flow domain. 

z 

r 

R 

z = H/2 

z = - H/2 

r 

v(r,z) 

 

H 

V = 0 

p0 
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(a. 1) 

 

(a. 2) 

 

(a. 3) 

 

(a. 4) 

 

(a. 5) 

 

(a. 6) 

 

(a. 7) 

 

(a. 8) 

 

(a. 9) 

 

(a. 10) 

 

(a. 11) 

 

(a. 12) 
Accordingly to the flow rate conservation expressions: 

 

 

(a. 13) 
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(a. 14) 
 

(a. 15) 
By introducyng velocity expression into (a.9): 

 

(a. 16) 

 

(a. 17) 
The symmetry condition on z direction is , therefore: 

 

(a. 18) 
Making the followings notations: 

 

(a. 19) 
And replacing in (a.18): 

 

  (a. 20) 

By integration in : 

 

(a. 21) 
 

(a. 22) 
 

(a. 23) 

 

(a. 24) 
Replacing   in (a.24): 

 

(a. 25) 
 

(a. 26) 
By introducing   in (a.10): 

 

(a. 27) 
The symmetry condition on z direction is , therefore: 
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(a. 28) 
The relationships (a.27) and (a.28) must be equal because they expres the same quantity , 

therefore the flollowing approximations can be made: 
 

(a. 29) 
 

(a. 30) 
The free therms: 

 
(a. 31) 

 must be a constant cos in (a.28) we have notherms in but only in : 

 

(a. 32) 
And the rest of the therms must be equal: 

 

(a. 33) 
Replacing in (2.8) the specified notations: 

 

(a. 34) 
By succesive integration on : 

 

(a. 35) 
And replacing  in (a.15):  

 

(a. 36) 
Cause of the symmetry ,  must be nought, 

 

(a. 37) 

 

(a. 38) 
The “no slip condition” imposes that , therefore: 

 

(a. 39) 

 

(a. 40) 
Replacing  in : 

 

(a. 41) 
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(a. 42) 
But 

 

(a. 43) 

 

(a. 44) 

 

(a. 45) 

 

(a. 46) 
The radial velocity has the following form: 

 

(a. 47) 
In the same manner, for axial velocity: 

 

(a. 48) 

 

(a. 49) 

 

(a. 50) 

 

(a. 51) 

 

(a. 52) 

 

(a. 53) 
 

(a. 54) 

 

(a. 55) 
 For the double symmetric squeeze flow, :  

 

(a. 56) 

 

(a. 57) 
Reducing , 
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(a. 58) 

 

(a. 59) 
Therefore, the axial velocity has the following expression: 

 

(a. 60) 

 

(a. 61) 
Replacing   in (a.34): 

 

(a. 62) 

 

(a. 63) 

 

(a. 64) 
The symmetry condition imposes the following notations: 

 

(a. 65) 

 

(a. 66) 
 

(a. 67) 

 

(a. 68) 
 

ANNEX 4. Simulation Parameters and boundary conditions for numerical modelling of 

squeeze flow. 

 
The single phase simulations parameters (both simple and oscillatory squeeze flow): 

 2-D case, double precision. 

Solver: 
 Pressure based solver; 
 Axisymmetric space; 
 Unsteady case, of the 1st Order Implicit Formulation; 
 Green-Gauss Cell Based gradient option; 
 Superficial Velocity for porous formulation; 
 Absolute velocity formulation. 
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Mesh Options: 
 Dynamic mesh (only for the transient approximation); 
 Layering mesh methods; 
 Split factor: 0.4; 
 Collapse factor: 0.04. 

Solution Controls: 
 PISO pressure-velocity coupling; 
 Skewness correction: 0; 
 Neighbour correction: 1; 
 PRESTO! Pressure discretization; 
 First order upwind momentum discretization. 

 

The boundary conditions imposed for both simple and oscillatory squeeze flow are presented in Figure 

A.5. 

 
Fig. A. 5. Boundary conditions imposed for both simple and oscillatory squeeze flow, in the case of 

transient dynamic mesh approximation. 
 
The boundary conditions imposed for the simple squeeze flow when using a quasisteady aproximation 

are presented in Figure A.6. 

 
Fig. A. 6. Boundary conditions imposed for both simple squeeze flow, in the case of quasis-teady 

aproximation. 
 
The multiphase simulations of  squeeze flow, used the following parameters: 

 2-D case, double precision. 

Solver: 
 Pressure based solver; 
 Axisymmetric space; 
 Unsteady case, of the 1st Order Implicit Formulation; 
 Both Green-Gauss Cell Based and Green-Gauss Node Based gradient option; 
 Superficial Velocity for porous formulation; 
 Absolute velocity formulation. 

Multiphase Model: 
 Volume of Fluid with 2 fluid phases; 
 VOF explicit scheme. 
 Courant number 0.25 -25; 
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 No implicit body force formulation. 
Phases interaction: 

 Wall adhesion (contact angle specified for each solid wall) / No wall adhesion (depending on 
the case); 

 Surface tension of 0.01 N/m / No surface tension (depending on the case). 
Mesh: 

 Dynamic mesh; 
 Layering mesh methods; 
 Split factor: 0.4; 
 Collapse factor: 0.4. 

Solution Controls: 
 PISO pressure-velocity coupling; 
 Skewness correction: 0. 
 Neighbour correction: 1. 
 PRESTO! Pressure discretization; 
 First order upwind momentum discretization; 
 Volume fraction scheme: CICSAM / Geo Reconstruct. 

 
Fig. A. 7. Boundary conditions imposed for multiphase (VOF) simulations of squeezing flow. 

 

ANNEX 5. Geometries construction and meshing for single phase quasi-steady 

approximation of squeeze flow simulations. Influence of the free surface geometry. 

 
The influence of end effects has been investigated also using a quasi-steady approximation of 

the constant velocity squeeze flow by numerical modelling into different geometries with various 

shapes of the outlet area, imposed free surface (see Paragraph 4.4.2). The dimenisons of the virtual 

geometries (2D, axial-symmetric) are the same as for the real experimental one ( ), at 

two different gaps ( ). The outlet zone was modelled as observed during the 

experiments: for VOFb and VOFc gemetries the lenght of the exterior zone is 1 mm; for the linear 

„free surfaces” the exterior lenght was of  VOFa1 – 0.5 mm, VOFa2 – 1 mm, VOFa3 – 2 mm; and 

VOFa4 – 3 mm. Geometries shapes are not allowing the use of quadilateral elemets, therefore the 

mesh is made by using triangular elements (see. Figure A.6). 
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Fig. A. 8. Geometries construction and meshing for single phase quasi-steady approximation of 

squeezing flow. Investigation of end effects by using different shapes of the oultet area. 
 

ANNEX 6. Generalized Reynold Equations 
 

Starting from Reynolds Equations of Lubrication in Cylindrical coordinates: 

 

(a. 69) 

 

(a. 70) 

 

(a. 71) 
With the imposed boundary conditions: 

 for     
(a. 72) 

  for    

(a. 73) 
velocity distribution becomes: 

(a. 74) 

 

(a. 75) 
The continuity equation is  

x O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

y 

Detail 

Detail 

Velocity inlet 
V [mm/s] 

Lower fixed 
wall 

p0 
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VOFb VOFc 
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(a. 76) 

 

(a. 77) 

 

(a. 78) 

 

(a. 79) 

 

(a. 80) 
Integrating on film thickness  

 

(a. 81) 

 

(a. 82) 

 

(a. 83) 

 

(a. 84) 
where the following notations are addopted: 

 

(a. 85) 
Replacing into (a.76): 

 

(a. 86) 

 

(a. 87) 

(a. 88) 

(a. 89) 
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(a. 90) 
From (a.70) keeping the boundary conditions: 

 

(a. 91) 

 

(a. 92) 

 

(a. 93) 

 

(a. 94) 
By replacing in (a.90): 

 

(a. 95) 
 

 

(a. 96) 
The Generalized Reynolds Equation is obtained 

 

(a. 97) 
Wich can be written in the following form: 

 

(a. 98) 
where  

 

(a. 99) 

 

(a. 100) 
 
 

 

ANNEX 7. The evolution of the free surface for all Newtonian samples in 
constant velocity squeeze flow, at all speeds 
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In Chapter 5, the constant velocity squeeze flow was investigated experimentally 

using the stress-controlled Physica MCR 301 rheometer with different testing geometries. 

The experimental setup allows the visualization of the free surface during the squeezing flow 

and its correlation with the measured force. Therefore during each test the interface evolution 

was tracked and recorded in video files (avi format) from which there were extracted 

successive images using Movie Maker software, correlated with different observation times.. 

Different Newtonian fluids were investigated: a mineral oil, IK, , a glycerin 

solution, GL, , and honey, HO,  (all measured at ). 

The evolution of the free surface is presented for all Newtonian samples in constant 

velocity squeeze flow, at all velocities in Figures A.9 – A. 17, as follows: 

 Mineral oil sample, constant velocity squeeze flow:   in Figure A.9;  

 in Figure A.10;   in Figure A.11. 

 Glycerin sample, constant velocity squeeze flow:   in Figure A.12;  

 in Figure A.13;   in Figure A.14. 

 Honey sample constant velocity squeeze flow:   in Figure A.15;  

in Figure A.16;  in Figure A.17. 
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Fig. A. 9. Free surface evolution depending on film thickness ( ) for the mineral oil sample in constant velocity squeeze flow,  . 
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Fig. A. 10. Free surface evolution depending on film thickness ( ) for the mineral oil sample in constant velocity squeeze flow,  . 
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Fig. A. 11. Free surface evolution depending on film thickness ( ) for the mineral oil sample in constant velocity squeeze flow,  . 
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Fig. A. 12. Free surface evolution depending on film thickness ( ) for glycerin sample in constant velocity squeeze flow,  .. 
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Fig. A. 13. Free surface evolution depending on film thickness ( ) for glycerin sample in constant velocity squeeze flow,  .. 
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Fig. A. 14. Free surface evolution depending on film thickness ( ) for glycerin sample in constant velocity squeeze flow,  .. 
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Fig. A. 15. Free surface evolution depending on film thickness ( ) for honey sample in constant velocity squeeze flow,  .. 
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Fig. A. 16. Free surface evolution depending on film thickness ( ) for honey sample in constant velocity squeeze flow,  .. 
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Fig. A. 17. Free surface evolution depending on film thickness ( ) for honey sample in constant velocity squeeze flow,  . 
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ANNEX 8. Cream and polysiloxane microstructure, before and after a simple shear test 
 

For a better understanding of materials behavior and the possible changes that may appear in 

their microstructure they were observed with a microscope in their initial state and after a simple shear 

deformation (  for 300 s).  

 
Fig. A. 18. Samples microstructure: cream before (a1) and after (a2) shear test; polysiloxane before 

(b1) and after (b2) shear test.  
 

After applying the deformation there weren't observed important changes of materials structure. 

ANNEX 9. Microstrucured surfaces details 
 
In Chapter 7, the influence of surface microstructure on aherence properties and on the 

measured normal fore in simple squeeze flow was investigated. The surfaces used for these 

investigations are three silica plates with different microstructures: a smooth plate, a plate with a micro 

textured surface, and plate with micro-spirals. Surface micro architecture dimensions are presented in 

this annex.  

The micro texture is formed by multiple micro geometries in shape of crucifix, disposed 

liniarily on the disk. Each geometry has the flollowing dimensions: ; ; 

 and a thickness of .  

The plate with a micro-spiral has 63 semicircles on the lower wall, semicircles that are 

connected to form the micro-spiral channel that has a width of  and a  

height, the radius being , see Figure 7.7 (Paragraph 7.3) 

a1) a2) 

b1) b2) 
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Fig. A. 19. Micro textured surface details. 

 
Fig. A. 20. Micro-spirals plate details. 

 
The semicircles are separated by a distance   and in the center of the geometry a 

circle with a diameter of   closes the spiral (as shown in Figure A.18). 
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